
DS PCE : IA et Jeux à deux joueurs

Solution.

Sauf mention explicite du contraire, on ne fait pas de programmation défensive dans ce devoir : les paramètres
passés en arguments des fonctions à écrire sont supposés posséder toutes les bonnes propriétés pour que les
fonctions s’exécutent sans erreur.

1 Perceptron binaire
On considère Rd comme un espace affine euclidien.
On rappelle que tout hyperplan d’un espace affine euclidien est associé à une équation de la forme W ·X+b = 0

où b est un scalaire, W est un vecteur normal à l’hyperplan et W ·X désigne le produit scalaire euclidien des
vecteurs W et X. Il est usuel d’écrire WX au lieu de W ·X ; ce que nous ferons désormais.

Le perceptron est un algorithme d’apprentissage supervisé de classifieurs binaires (c’est-à-dire séparant deux
classes). Il a été inventé en 1957 par Frank Rosenblatt au laboratoire d’aéronautique de l’université Cornell. Il
est considéré comme l’ancêtre des réseaux de neurones actuels.

On considère un ensemble de données D ⊂ Rd (d > 0) qui peuvent appartenir à deux classes notées 1 et
−1 (il y a des données positives et des données négatives). Les données sont considérées comme des points
de l’espace affine Rd. Soit Z ⊂ D un sous-ensemble fini de données dites d’apprentissage dont on connaît les
étiquettes (c.a.d qu’on sait pour toute donnée de Z si son étiquette est positive ou négative).

L’objectif de l’algorithme du perceptron est de trouver un hyperplan H dit de séparation stricte tel que H
sépare Z en deux sous-ensembles qui correspondent exactement aux données positives et aux données négatives
de Z. Autrement dit, on cherche un vecteur (normal à l’hyperplan) W et un scalaire b tels que, pour tout X ∈ Z
d’étiquette e ∈ {−1, 1}, on a e(WX + b) > 0. Nous disons que la séparation est stricte puisque l’inégalité est
stricte.

Par exemple, si d = 2, les données sont alors des points du plan affine euclidien. On cherche donc une droite
∆ telle que les points positifs de Z sont tous d’un côté de ∆ et les négatifs de l’autre.

1.1 Étude préliminaire
Intéressons-nous au cas où l’inégalité ci-dessus est large :
Un hyperplan d’équation WX + b = 0 sépare les données de Z au sens large si

— pour tout X ∈ Z d’étiquette 1, WX + b ≥ 0 ;
— pour tout X ∈ Z d’étiquette −1, WX + b < 0.

Question 1.
Si un hyperplan sépare au sens large les données de Z, établir qu’on peut trouver un hyperplan qui sépare

les données de Z au sens strict.

Solution. Soit Z = {X1, . . . , Xk} un échantillon de données labélisées linéairement séparables. Soit (W, b) un
hyperplan séparant les données de Z.

On a alors :

{
〈W,Xk〉+ b ≥ 0 si yk = 1

〈W,Xk〉+ b < 0 si yk = −1.
Posons ε = −max

k
{〈W,Xk〉+ b | yk = −1}.

On a alors :{
〈W,Xk〉+ b+ ε

2 ≥
ε
2 > 0 si yk = 1

〈W,Xk〉+ b+ ε
2 ≤ −

ε
2 < 0 si yk = −1.

L’hyperplan (W, b+
ε

2
) démontre donc le lemme.

1

Informatique Lycée Thiers

Notre premier travail va être de montrer que l’hyperplan de séparation n’existe malheureusement pas tou-
jours.

Question 2.
Plaçons nous dans le cas d = 2 et considérons la classification suivante : les points positifs sont ceux

dont l’abscisse et l’ordonnée sont différentes, les points négatifs sont sur la droite d’équation y = x (première
bissectrice du repère orthonormé direct de R2). Posons Z = {(0, 0); (1, 0); (0, 1); (1, 1)}.

Établir qu’il n’existe pas de droite séparant les données de Z.

Solution. Raisonnons par l’absurde en supposant que ∆ : ax+ by + c = 0 sépare les données de Z. On a donc
(a, b) qui est un vecteur normal à ∆

Si la droite passe par l’origine, elle ne peut pas séparer les données donc c 6= 0.
Supposons que (0, 0) et (1, 1) sont du côté des points ax+by+c < 0 et (1, 0) et (0, 1) sont du côté des points

ax+ by + c > 0.
Cela nous donne 

c<0 pour (0, 0)
a+c>0 pour (1, 0)
b+c>0 pour (0, 1)

a+b+c<0 pour (1, 1)

En sommant les inégalités pour les points positifs on obtient

a+ c+ b+ c > 0 donc a+ b+ 2c > 0

Mais c < 0 et a+ b+ c < 0 donc a+ b+ 2c < 0 ABSURDE.

Si X ∈ Z et e ∈ {−1, 1} est son étiquette on dit que (X, e) est une donnée labelisée. Il est plus pratique
dans ce qui suit de raisonner avec l’ensemble des données labelisées S = {(X1, e1), . . . , (Xn, en)} tel que Z =
{X1, . . . , Xn} et pour tout i ∈ J1, nK, Xi ∈ Rd et ei ∈ {−1, 1}.

Soit WX + b = 0 l’équation d’un hyperplan de séparation (strict) des données labelisées de S. On peut
artificiellement imposer b = 0 en plongeant Rd dans Rd+1. Il suffit d’associer à chaque vecteur X = (x1, . . . , xn)
un vecteur X ′ = (x1, . . . , xn, α) avec α indépendant de X.

Question 3.
Déterminer α et un vecteur W ′ ∈ Rd+1 de sorte que l’hyperplan d’équation W ′X = 0 sépare les données de

S′ = {(X ′
1, e1), . . . , (X

′
n, en)} si et seulement si WX + b = 0 sépare celles de S.

La coordonnée supplémentaire α est appelée un biais. Les éléments de S′ = {(X ′
1, e1), . . . , (X

′
n, en)} forment

les données biaisées labelisées. On rappelle que les X ′
i ont tous la même dernière coordonnée.

Solution. WX + b = 0 si et seulement si (W, b) · (X, 1) = 0.

L’algorithme du perceptron est très simple :
Algorithme 1 : Algorithme du perceptron (une mise à jour par itération)

Input : Un ensemble d’apprentissage biaisé

S = {(Xi, yi)}1≤i≤n, Xi ∈ Rd+1, yi ∈ {−1,+1}

Output : Un vecteur W ∈ Rd+1 tel que ∀k ∈ J1, nK, yk(W ·Xk) > 0
W ← 0
repeat

erreur ← false
foreach (Xi, yi) ∈ S do

if yi(W ·Xi) ≤ 0 then
W ←W + yiXi

erreur ← true
break

until erreur = false
return W

PC* DS Graphes
Page 2/16

8 février 2026

Informatique Lycée Thiers

Le théorème du perceptron indique que, si les données sont linéairement séparables, alors l’algorithme termine
en un nombre fini d’étapes.

Soit S = {(X1, e1), . . . , (Xn, en)} un ensemble de données d’apprentissage labélisées biaisées (chaque Xi ∈
Rd+1 a pour étiquette yi {−1, 1}).

On pose
R = max

i∈J1,nK ‖Xi‖ et pour tout W unitaire : β(W) = min {y(WX) | (X, y) ∈ S}

On définit γ par
γ = max

W∈Rd | ∥W∥=1
β(W)

On s’interroge sur la pertinence des définitions précédentes. La question suivante aurait davantage sa place
en devoir de maths et doit être traitée après tout le reste.

Question 4.
Existence de γ. Soit W ∗ un vecteur unitaire définissant un hyperplan qui sépare strictement S.
1. Montrer que si W est unitaire alors β(W) est bien défini.
2. Montrer que si W est unitaire mais ne sépare pas S strictement alors β(W ∗) > β(W).
3. Montrer que l’ensemble des β(W) possède un maximum (pour les 5/2 ?).

Solution. Voici

1. Un ensemble fini (il y a un nombre fini de donnée d’apprentissage) possède un minimum. Donc β est bien
défini.

2. Si W ne ne sépare pas S strictement alors il existe (X, y) dans S tel que yWX ≤ 0. Ainsi β(W) ≤ 0.
Or si W ∗ sépare les données strictment, pour tout (X ′, y′) de S, yW ∗X ′ > 0. D’où ce qu’on veut.

3. Pour (X, y), donnée d’apprentissage biaisée, X 6= 0 (à cause du biais) et fX,y : W 7→ yWX est linéaire en
dimension finie donc continue sur Rd+1. Par ailleurs, β : W 7→ min(X,y)∈S f(X,y)(W). Comme l’application
β est le minimum d’un ensemble fini de fonctions continues, elle est continue.
Par suite le cercle unité de Rd+1 (l’ensemble des vecteurs unitaires) qui est fermé borné possède une image
fermée bornée par β. Donc les bornes sont atteintes : il existe alors un vecteur unitaire W tel que β(W) est
maximum pour les vecteurs unitaires. Par ce qui précède, on sait que W est nécessairement un séparateur
strict.
Ainsi, il existe un vecteur unitaire qui atteint le maximum des β(W) et ce vecteur est forcément un
séparateur strict.

Une conséquence de ce qui précède est que, si S est séparable, alors γ est bien défini et strictement positif.
De plus, il existe un vecteur unitaire W ∗ séparant strictement S tel que γ = β(W ∗).

On énonce le théorème de convergence de Novikoff (1962).

Théorème 1.1. L’algorithme du Perceptron de Rosenblatt termine si et seulement si l’échantillon de données
entré est linéairement séparable. Dans ce cas, la variable W en sortie définit un hyperplan de séparation des
données biaisées 1.

La convergence se fait en au plus
(
R

γ

)2

itérations.

Question 5.
Établir la correction partielle de l’algorithme, c’est à dire que si il termine alors la valeur W renvoyée définit

un hyperplan de séparation stricte.

Solution. Il n’y a aucune donnée labélisée (X, y) telle que y(WX) ≤ 0.

1. On parle de correction partielle

PC* DS Graphes
Page 3/16

8 février 2026

Informatique Lycée Thiers

Nous voulons établir le dernier point qui donne une borne
(
R

γ

)2

au nombre d’itérations.

Comme il est d’usage en analyse d’algorithme, on numérote les variables selon le tour de boucle : Wk désigne
le contenu de W à la fin du tour de boucle k. Ainsi W0 désigne W avant l’entrée dans la boucle, W1 représente
W après le premier passage etc.

Question 6.
On suppose que S est séparable. On note W ∗ un vecteur de norme 1 tel que l’hyperplan d’équation W ∗X = 0

sépare les données labelisées biaisées et on choisit W ∗ tel que β(W) = γ. On suppose également que l’algorithme
fait k ≥ 1 erreurs et donc qu’il y a un tour k+1. Pour 1 ≤ r ≤ k+1, on note (Xtr , ytr) la donnée d’apprentisage
qui déclenche l’erreur au tour de boucle principal r.

1. Établir que W1W
∗ ≥ 0.

2. Montrer que Wk+1W
∗ ≥ (k + 1)γ.

3. Montrer que ‖Wk+1‖ ≥ (k + 1)γ.
4. Établir que ‖Wk+1‖2 ≤ (k + 1)R2

FFF coquille dans le sujet initial. J’avais écrit ‖Wk+1‖ ≤ (k+1)2R2 ce qui ne permettait pas de conclure.
5. Conclure.

Solution. 1. On sait que W0 = 0, alors yt1(W0Xt1) ≤ 0 donc W1 = yt1Xt1 . On a

W1W
∗ = yt1Xt1W

∗

et ceci est positif puisque l’hyperplan défini par W ∗ sépare les données. CETTE QUESTION NE SERT
A RIEN DANS CE QUI SUIT.

2. On a W0W
∗ = 0 ≥ 0× γ. Par récurrence, on suppose que WkW

∗ ≥ kγ. Alors

Wk+1W
∗ = (Wk + ytk+1

Xtk+1
)W ∗

= WkW
∗ + ytk+1

Xtk+1
W ∗

≥ WkW
∗ + β(W ∗) par def. β(W ∗)

≥ kγ + β(W ∗)

= kγ + γ

3. On en déduit en particulier que Wk+1W
∗ ≥ 0. On a donc en utilisant Cauchy-Schwartz

Wk+1W
∗ = |Wk+1W

∗| ≤ ‖Wk+1‖‖W ∗‖ = Wk+1

En combinant :
Wk+1 ≥ (k + 1)γ

4. Réciproquement, on a

‖Wk+1‖2 = ‖Wk + ytk+1
Xtk+1

‖2

= ‖Wk‖2 + 2ytk+1
WkXtk+1︸ ︷︷ ︸
≤0

+ ‖Xtk+1
‖2︸ ︷︷ ︸

≤R2

≤ ‖Wk‖2 +R2

On a ‖W0‖2 ≤ 0×R2 et si Wk ≤ kR2, alors

‖Wk+1‖2 ≤ (k + 1)R2

5. On a donc
(k + 1)2γ2 ≤ ‖Wk+1‖2 ≤ (k + 1)R2

Et par suite k + 1 ≤ R2

γ2
: le nombre de tours de boucles est borné !

On admet que lorsque les données entrées ne sont pas linéairement séparables, l’algorithme ne converge pas,
et la suite (Wk) est périodique. Le cycle peut cependant être long et difficile à détecter.

PC* DS Graphes
Page 4/16

8 février 2026

Informatique Lycée Thiers

1.2 Implémentation
On se donne les décorations de types suivantes :� �

1 from typing import List , Tuple , Optional
2

3 Vector = List[float] # un vecteur est une liste de flottants
4 LabeledSample = Tuple [Vector , int] # un exemple labelis é est un tuple (vecteur , é tiquette)
5 Dataset = List[LabeledSample] # ensemble d'exemples labelis és� �
Question 7.

Écrire une fonction dot_product(x: Vector, y: Vector) -> float qui calcule le produit scalaire de
deux vecteurs x, y de mêmes dimensions.� �

1 dot_product ([1, 2, -1], [3, 1, 1]) # renvoie 4� �
Solution. Code� �

1 def dot_product (x: Vector , y: Vector) -> float:
2 return sum(xi * yi for xi , yi in zip(x, y))� �

Question 8.
Écrire une fonction

bias_dataset(S: Dataset) -> Dataset qui prend un ensemble de données labelisées S, représenté par une
liste de couples (X, e), et renvoie un nouvel ensemble S′ dans lequel chaque vecteur X a été biaisé par l’ajout
d’une coordonnée.� �

1 S = [([2.0 , -1.0], 1), ([0.5 , 3.0] , -1)]
2 bias_dataset (S)
3 # renvoie [([2.0 , -1.0, alpha], 1), ([0.5 , 3.0, alpha], -1)] avec alpha à dé terminer� �

Solution. Code� �
1 def bias_dataset (S: Dataset) -> Dataset :
2 """ Return S' where each X becomes X' = X + [1.0]. """
3 return [(X + [1.0] , e) for X, e in S]� �

Question 9.
Écrire une fonction

perceptron_biased(S_biased: Dataset) -> Vector qui applique l’algorithme du perceptron à un ensemble
de données déjà biaisées et renvoie le vecteur de poids W ′ obtenu.� �

1 S_b = [([2.0 , -1.0, 1.0] , 1), ([0.5 , 3.0, 1.0] , -1)]
2 perceptron_biased (S_b)
3 # renvoie une liste de 3 coordonn ées� �

Solution. Une première version (celle qui était attendue) s’arrête quand un point fixe est atteint mais peut
éventellement entrer en boucle infinie :

PC* DS Graphes
Page 5/16

8 février 2026

Informatique Lycée Thiers

� �
1 def perceptron_biased (S_biased : Dataset) -> Vector :
2 """
3 Apprentissage du perceptron sur des données déjà biais ées.
4 Renvoie W' (les poids incluant le biais comme derni ère
5 coordonn ée). S'arrête lorsquil ny a plus d'erreur
6 """
7 d_plus_1 = len(S_biased [0][0])
8 Wp = [0.0] * d_plus_1
9

10 while True:
11 error_found = False
12 for Xp , y in S_biased :
13 if y * dot_product (Wp , Xp) <= 0:
14 # update
15 Wp2 = []
16 for i in range (len(Wp)):
17 Wp2. append (Wp[i] + y * Xp[i])
18 Wp = Wp2
19

20 error_found = True
21 break # 1 update par tour de boucle principale
22

23 if not error_found :
24 break
25 return Wp� �

Si les données ne sont pas séparables, la version précédente ne termine pas.
En pratique, on introduit une valeur maximale d’itérations et on s’arrête soit quand cette valeur est atteinte

soit quand un point fixe est trouvé.� �
1 def perceptron_biased (S_biased : Dataset ,
2 max_updates : Optional [int] = None) -> Vector :
3 """
4 Apprentissage du perceptron sur des données déjà biais ées.
5 Renvoie W' (les poids incluant le biais comme derni ère
6 coordonn ée). S'arrête lorsquil ny a plus d'erreur , ou après
7 max_updates mises à jour si ce param ètre est fourni .
8 """
9 d_plus_1 = len(S_biased [0][0])

10 Wp = [0.0] * d_plus_1
11

12 updates = 0
13 while True:
14 error_found = False
15 for Xp , y in S_biased :
16 if y * dot_product (Wp , Xp) <= 0:
17 # update
18 Wp2 = []
19 for i in range (len(Wp)):
20 Wp2. append (Wp[i] + y * Xp[i])
21 Wp = Wp2
22 error_found = True
23 updates += 1
24 break
25

26 if not error_found :
27 break
28 if max_updates is not None and updates >= max_updates :
29 break # assure la terminaison
30

31 return Wp� �
On peut écrire Wp = [w + y * x for w, x in zip(Wp, Xp)] pour éviter la création de la variable auxiliaire

PC* DS Graphes
Page 6/16

8 février 2026

Informatique Lycée Thiers

Wp2 .

Question 10.
Écrire une fonction split_weights_bias(Wp: Vector) -> (Vector, float) qui, à partir d’un vecteur

W ′ = (w1, . . . , wd, b), renvoie le couple (W, b) où W = (w1, . . . , wd).� �
1 split_weights_bias ([1.0 , -2.0, 0.5])
2 # renvoie ([1.0 , -2.0], 0.5)� �

Solution. Code� �
1 def split_weights_bias (Wp: Vector) -> Tuple [Vector , float]:
2 """
3 A partir de W' = (w1 ,... ,wd ,b) return (W,b)
4 avec W in R^d et b scalaire .
5 """
6 if not Wp:
7 return ([], 0.0) # programmation dé fensive
8 return (Wp [:-1], Wp [-1])� �

Question 11.
Écrire une fonction

predict(W: Vector, b: float, X: Vector) -> int qui prédit l’étiquette associée à un vecteur X non
biaisé à l’aide du vecteur de poids W et du biais b.� �

1 predict ([1.0 , -2.0], 0.5, [2.0 , 1.0])
2 # renvoie -1� �

Solution. Code� �
1 def predict (W: Vector , b: float , X: Vector) -> int:
2 """
3 é tiquette prédite (+1 or -1)
4 pour un vector X non - biased en utilisant (W,b).
5 """
6 if len(W) != len(X):# programmation dé fensive
7 raise ValueError ("W and X must have the same dimension ")
8 return 1 if (dot_product (W, X) + b) > 0 else -1� �
2 Jeu de morpion

On se concentre dans cette partie sur le jeu de morpion. Les grilles de taille n× n sont représentées par des
chaînes de caractères de longueur n2 qui décrivent la grille ligne par ligne.

FFF (ajouté après le DS : avant, ça aurait été plus clair !) Un état est un tuple (joueur, grille) dont le premier
membre indique qui doit joueur.

FFF (ajouté après le DS) Ainsi

XOO
..X
.XO

PC* DS Graphes
Page 7/16

8 février 2026

Informatique Lycée Thiers

est décrit par XOO..X.XO.
Il y a 3 symboles utilisés :X, ·, O : le caractère X désigne une case occupée par le premier joueur, O par le

second et le point . une case vide. On suppose correctement formées les grilles : on ne demande pas de vérifier
ce fait dans les fonctions.

Un état plein correspond à une grille complètement remplie avec des X et des O. Un état de match nul
correspond à une grille pleine où aucune ligne, colonne ou diagonale ne comporte n fois le même symbole (si
n× n est la dimension de la grille).

Un état gagnant pour un joueur J appartient à l’autre joueur et correspond à une grille (pas nécessairement
pleine) où J a rempli avec son symbole une ligne, une colonne ou une diagonale.

Un état terminal est donc

— soit un état de match nul,
— soit un état gagnant pour un joueur.

On définit les types suivants :� �
1 from typing import Tuple
2

3 gamer = str
4 grille = str
5 state = Tuple [gamer , grille]
6

7 Joueurs : Tuple [gamer , gamer] = ("X", "O")� �
Question 12.

Écrire la fonction player(e: state) -> gamer qui, étant donné un état e = (J, s), renvoie le joueur J à
qui c’est le tour de jouer.� �

1 e = ("X", "XXO ..X.OO")
2 player (e) # renvoie "X"� �

Solution. Code� �
1 def player (e: state) -> gamer :
2 return e[0]� �
Question 13.

Écrire la fonction other(j: gamer) -> gamer qui prend un joueur en paramètre et renvoie l’autre joueur
(on suppose que les joueurs possibles sont stockés dans une constante globale Joueurs de longueur 2).� �

1 Joueurs = ("X","O")
2 other ("O") # renvoie "X"� �

Solution. Code� �
1 def other(j: gamer) -> gamer :
2 if j == Joueurs [0]:
3 return Joueurs [1]
4 else:
5 return Joueurs [0]� �

PC* DS Graphes
Page 8/16

8 février 2026

Informatique Lycée Thiers

Question 14.
Écrire la fonction init(n: int) -> state qui renvoie l’état initial du jeu sur une grille carrée de taille

n× n : la grille est vide et le premier joueur est celui de la liste Joueurs.� �
1 init (3) # renvoie ("X " ,".........")� �

Solution. Les chaînes de caractères sont immuables en Python : on ne peut pas les modifier. Pour obtenir une
chaîne de 20 points, il faut écrire :� �

1 "." * 20� �� �
1 def init(n: int) -> state :
2 return (Joueurs [0] , "." * (n * n))� �
Question 15.

Écrire la fonction posChaine(n: int, i: int, j: int) -> int qui convertit une position de la grille
(i, j) (ligne i, colonne j, indices commençant à 0) en l’indice correspondant dans la chaîne représentant la grille.� �

1 posChaine (3, 1, 2) # renvoie 5� �
Solution. Code� �

1 def posChaine (n: int , i: int , j: int) -> int:
2 return i * n + j� �
Question 16.

Écrire la fonction posGrille(n: int, k: int) -> tuple[int,int] qui convertit un indice k de la chaîne
(avec 0 ≤ k < n2) en la position (i, j) correspondante dans la grille.� �

1 posGrille (3, 5) # renvoie (1 ,2)� �
Solution. Code� �

1 def posGrille (n: int , k: int) -> Tuple[int , int]:
2 return (k // n, k % n)� �
Question 17.

Écrire la fonction winning_row(J: gamer, s: grille, n: int) -> bool qui renvoie True s’il existe une
ligne de la grille n× n entièrement remplie par le symbole du joueur J .

Solution. Code� �
1 def winning_row (J: gamer , s: grille , n: int) -> bool:
2 """ Renvoie True s'il existe une ligne entiè rement remplie par J."""
3 for i in range (n):
4 ligne_gagnante = True
5 for j in range (n):
6 if s[posChaine (n, i, j)] != J:
7 ligne_gagnante = False
8 break
9 if ligne_gagnante :

10 return True
11 return False� �

PC* DS Graphes
Page 9/16

8 février 2026

Informatique Lycée Thiers

� �
1 winning_row ("X", "XXX ", 3) # renvoie True� �
Question 18.

Écrire la fonction winning_col(J: gamer, s: grille, n: int) -> bool qui renvoie True s’il existe une
colonne de la grille n× n entièrement remplie par le symbole du joueur J .� �

1 winning_col ("O", "O..O..O..", 3) # renvoie True� �
Solution. On utilise ici, pour varier les plaisirs, un pythonisme : le else en sortie de boucle n’est exécuté que
si la boucle se termine sans break .� �

1 def winning_col (J: gamer , s: grille , n: int) -> bool:
2 """ Renvoie True s'il existe une colonne entiè rement remplie par J."""
3 for j in range (n):
4 for i in range (n):
5 if s[posChaine (n, i, j)] != J:
6 break
7 else:
8 return True
9 return False� �
Question 19.

Écrire la fonction winning_diag(J: gamer, s: grille, n: int) -> bool qui renvoie True si une des
deux diagonales de la grille n× n est entièrement remplie par le symbole du joueur J .� �

1 winning_diag ("X", "X...X...X", 3) # renvoie True� �
Solution. Code� �

1 def winning_diag (J: gamer , s: grille , n: int) -> bool:
2 """ Renvoie True si une des deux diagonales est entiè rement remplie par J."""
3 # diagonale principale
4 for i in range (n):
5 if s[posChaine (n, i, i)] != J:
6 break
7 else:
8 return True # exécuté seulement si la boucle se termine sans break
9

10 # diagonale secondaire
11 for i in range (n):
12 if s[posChaine (n, i, n - 1 - i)] != J:
13 break
14 else:
15 return True
16

17 return False� �

PC* DS Graphes
Page 10/16

8 février 2026

Informatique Lycée Thiers

Question 20.
Écrire la fonction win(J: gamer, s: grille) -> bool qui détermine si le joueur J a gagné sur la grille

décrite par la chaîne s (de longueur n2). On pourra calculer n à partir de la longueur de s.� �
1 win("X", "XXO ..X.OO") # renvoie False� �

Solution. Code� �
1 def win(J: gamer , s: grille) -> bool:
2 """ Renvoie True si J a une ligne , une colonne ou une diagonale gagnante ."""
3 n = int(len(s) ** 0.5)
4 return winning_row (J, s, n) or winning_col (J, s, n) or winning_diag (J, s, n)� �
Question 21.

Écrire la fonction actions(e: state) -> list[int] qui renvoie la liste des coups possibles depuis l’état
e. Un coup est représenté par l’indice d’une case libre dans la chaîne décrivant la grille.� �

1 actions (("X","X.O..O...")) # renvoie [1 ,3 ,4 ,7 ,8]� �
Solution. Code� �

1 def actions (e: state) -> List[int]:
2 """ Renvoie la liste des coups possibles (indices libres de la grille). """
3 _, s = e
4 return [k for k in range (len(s)) if s[k] == "."]� �
Question 22.

Écrire la fonction move(e: state, a: int) -> state qui renvoie l’état obtenu après que le joueur à qui
c’est le tour joue le coup a dans l’état e.� �

1 move (("X","X.O..O..."), 1)
2

3 # renvoie ("O"," XXO ..O...")� �
Solution. Code� �

1 def move(e: state , a: int) -> state :
2 """ Applique le coup a à l'état e et renvoie le nouvel état."""
3 J, s = e
4 s2 = s[:a] + J + s[a+1:]
5 return (other(J), s2)� �
Question 23.

Écrire la fonction terminal(e: state) -> bool qui indique si l’état e est terminal, c’est-à-dire si l’un des
joueurs a gagné ou si la grille est pleine.� �

1 terminal (("X","XXXOO")) # renvoie True� �
Solution. Code

PC* DS Graphes
Page 11/16

8 février 2026

Informatique Lycée Thiers

� �
1 def terminal (e: state) -> bool:
2 """ Renvoie True si l'état est terminal (victoire ou grille pleine). """
3 J, s = e
4 return win(J, s) or win(other (J), s) or "." not in s� �
Question 24.

Écrire la fonction utility(e: state, Jmax: gamer) -> int qui renvoie l’utilité de l’état terminal e pour
le joueur Jmax :

— 1 si Jmax a gagné,
— −1 si Jmax a perdu,
— 0 en cas de match nul.� �

1 utility (("X"," XXXOO"), "X") # renvoie 1� �
Solution. Code� �

1 def utility (e: state , Jmax: gamer) -> int:
2 """ Renvoie l'utilit é de l'état terminal pour le joueur Jmax."""
3 _, s = e
4 if win(Jmax , s):
5 return 1
6 if win(other(Jmax), s):
7 return -1
8 return 0� �
Question 25.

Écrire la fonction minimax_value(e: state, Jmax: gamer) -> int qui renvoie la valeur minimax de
l’état e du point de vue du joueur Jmax.

— Si e est terminal, la fonction renvoie utility(e,Jmax) .
— Sinon, si c’est au tour de Jmax de jouer, la fonction renvoie le maximum des valeurs minimax des états

obtenus après un coup possible.
— Sinon (c’est au tour de l’autre joueur), la fonction renvoie le minimum de ces valeurs.� �

1 minimax_value (("X","XX.OO"), "X") # renvoie 1� �
Solution. Code� �

1 def minimax_value (e: state , Jmax: gamer) -> int:
2 """
3 Renvoie la valeur minimax de l'état e du point de vue de Jmax.
4 """
5 if terminal (e):
6 return utility (e, Jmax)
7

8 J, _ = e
9 vals = [minimax_value (move(e, a), Jmax) for a in actions (e)]

10

11 if J == Jmax:
12 return max(vals)
13 else:
14 return min(vals)� �

PC* DS Graphes
Page 12/16

8 février 2026

Informatique Lycée Thiers

Question 26.
Écrire la fonction minimax(e: state, Jmax: gamer) -> int qui, étant donné un état non terminal e,

renvoie un coup optimal pour le joueur à qui c’est le tour de jouer, du point de vue de Jmax. On pourra tester
tous les coups possibles et conserver celui qui maximise la valeur minimax_value de l’état obtenu. La fonction
soulève une erreur d’assertion si a est terminal.� �

1 minimax (("X","XX.OO"), "X") # renvoie 2� �
Solution. Code� �

1 def minimax (e: state , Jmax: gamer) -> int:
2 """
3 Renvoie un coup optimal (indice dans la chaîne) depuis l'état e,
4 du point de vue du joueur Jmax.
5 On suppose que e n'est pas terminal .
6 """
7 best_a = None
8 best_v = None
9

10 for a in actions (e):
11 v = minimax_value (move(e, a), Jmax)
12 if best_v is None or v > best_v :
13 best_v = v
14 best_a = a
15

16 # e n'est pas terminal => actions (e) non vide => best_a défini
17 assert best_a is not None # programmation dé fensive
18 return best_a
19

20 #v2 plus courte : on sait que les scores sont 1 ou -1
21 def minimax_value (e: state , Jmax: gamer) -> int:
22 for a in actions (e):
23 if minimax_value (move(e,a),Jmax) == 1:
24 return a #au moins un coup inté ressant pour Jmax
25 return 0 #tous les coups sont gagnés par l'autre joueur� �

Question 27.
Écrire la fonction lines_indices(n: int) -> list[list[int]] qui renvoie la liste de tous les aligne-

ments possibles d’une grille carrée n× n.
— chaque alignement (ligne, colonne ou diagonale) est représenté par la liste des indices correspondants dans

la chaîne représentant la grille ;
— on rappelle que la conversion entre une position (i, j) de la grille et l’indice dans la chaîne se fait à l’aide

de la fonction posChaine.� �
1 lines_indices (3)
2 # renvoie
3 # [
4 # [0,1 ,2], [3,4,5], [6 ,7 ,8], # lignes
5 # [0,3 ,6], [1,4,7], [2 ,5 ,8], # colonnes
6 # [0,4 ,8], [2 ,4 ,6] # diagonales
7 #]� �

Solution. Code� �
1 def lines_indices (n: int) -> List[List[int]]:
2 """ Liste toutes les lignes (au sens 'alignements ') sous forme de listes d'indices k."""
3 L = []
4

PC* DS Graphes
Page 13/16

8 février 2026

Informatique Lycée Thiers

5 # lignes
6 for i in range (n):
7 L. append ([posChaine (n, i, j) for j in range (n)])
8

9 # colonnes
10 for j in range (n):
11 L. append ([posChaine (n, i, j) for i in range (n)])
12

13 # diagonales
14 L. append ([posChaine (n, i, i) for i in range (n)])
15 L. append ([posChaine (n, i, n - 1 - i) for i in range (n)])
16

17 return L� �
Question 28.

Écrire la fonction heuristic(e: state, Jmax: gamer) -> int qui renvoie une estimation de la « qua-
lité » d’un état non terminal e pour le joueur Jmax. On utilisera l’heuristique suivante :

— un alignement (ligne, colonne ou diagonale) est possible pour un joueur s’il ne contient aucun symbole
adverse ;

— l’heuristique est la différence entre le nombre d’alignements possibles pour Jmax et le nombre d’aligne-
ments possibles pour l’adversaire.� �

1 heuristic (("X","X..O "), "X") # renvoie un entier� �
Solution. Code� �

1 def heuristic (e: state , Jmax: gamer) -> int:
2 """
3 Heuristique pour le morpion :
4 (nb d'alignements encore possibles pour Jmax) - (idem pour l'autre joueur).
5 """
6 _, s = e
7 n = int(len(s) ** 0.5)
8 opp = other (Jmax)
9

10 score = 0
11 for idxs in lines_indices (n):
12 line = [s[k] for k in idxs]
13 if opp not in line:
14 score += 1
15 if Jmax not in line:
16 score -= 1
17 return score� �

Certains étudiant.e.s on ajouté un test non demandé par le sujet :� �
1 line = [s[k] for k in idxs]
2 if '.' not in line:
3 break #le score ne peut augmenter car la ligne n'est pas jouable
4 if opp not in line:
5 score += 1
6 if Jmax not in line:
7 score -= 1� �

Si ’.’ not in line se produit, c’est que la grille est gagnante pour un joueur. L’application de l’heuristique
n’a guère de sens dans ce cas.

PC* DS Graphes
Page 14/16

8 février 2026

Informatique Lycée Thiers

Question 29.
Écrire la fonction minimax_value_depth(e: state, Jmax: gamer, d: int, h) -> int qui renvoie la

valeur minimax de l’état e du point de vue du joueur Jmax, en limitant la profondeur de recherche à d et en
utilisant une fonction heuristique h pour estimer les états non terminaux.

— si e est terminal, la fonction renvoie le score tel que défini par utility du point de vue du joueur Jmax ;
— si d = 0, la fonction renvoie la valeur de l’heuristique du point de vue du joueur Jmax ;
— sinon, si c’est au tour de Jmax de jouer, la fonction renvoie le maximum des valeurs obtenues après un

coup possible ;
— sinon, elle renvoie le minimum de ces valeurs.

Solution. Code� �
1 def minimax_value_depth (
2 e: state ,
3 Jmax: gamer ,
4 d: int ,
5 h: heuristic_fun
6) -> int:
7 """
8 Valeur minimax de e pour Jmax , avec coupure à profondeur d
9 et heuristique h.

10 """
11 if terminal (e):
12 return utility (e, Jmax)
13 if d == 0:
14 return h(e, Jmax)
15

16 J, _ = e
17 vals = [
18 minimax_value_depth (move(e, a), Jmax , d - 1, h)
19 for a in actions (e)
20]
21

22 if J == Jmax:
23 return max(vals)
24 else:
25 return min(vals)� �

Question 30.
Écrire la fonction minimax_depth(e: state, Jmax: gamer, d: int, h) -> int qui, étant donné un

état non terminal e, renvoie un coup choisi par l’algorithme min-max avec profondeur maximale d et heuristique
h.� �

1 minimax_depth (("X","X..O "), "X", 2, h) # renvoie un coup (indice)� �
Solution. Code� �

1 def minimax_depth (
2 e: state ,
3 Jmax: gamer ,
4 d: int ,
5 h: heuristic_fun
6) -> int:
7 """ Renvoie un coup optimal selon la profondeur d et lheuristique h."""
8 acts = actions (e)
9 best_a = acts [0]

10 best_v = minimax_value_depth (move(e, best_a), Jmax , d - 1, h)

PC* DS Graphes
Page 15/16

8 février 2026

Informatique Lycée Thiers

11

12 for a in acts [1:]:
13 v = minimax_value_depth (move(e, a), Jmax , d - 1, h)
14 if v > best_v :
15 best_v = v
16 best_a = a
17

18 return best_a� �

PC* DS Graphes
Page 16/16

8 février 2026

	Perceptron binaire
	Étude préliminaire
	Implémentation

	Jeu de morpion

