
TD Monnayeur glouton MPSI

On veut trouver expérimentalement quelle est la plus grande somme qu’on puisse rembourser de façon
optimale dans le système de pièces européen sans utiliser de billet/pièce de 200 euros. On a vu en cours qu’il
s’agit de 199 euros mais nous voulons faire une exploration exhaustive d’un arbre de décision pour en avoir le
cœur net.

On se donne les variables globales suivantes :� �
1 #système de pièce européen
2 coins = [1 ,2 ,5 ,10 ,20 ,50 ,100 ,200]
3 """
4 nb_max : tableau des nbs max possibles de pièces pour rembourser sans piece 200
5 renseigne les contraintes 1 et 2 du cours
6 exemple : nb_max [1] vaut 2, donc on peut prendre de 0 à 2 pièces de 2 euros
7 """
8 nb_max = [1 ,2 ,1 ,1 ,2 ,1 ,1 ,0]� �
Question 1.

Proposer une version récursive monnayeur(v,s) de la fonction greedy_change du cours.

Question 2.
Écrire la fonction� �

1 """
2 respect de la 3eme contrainte
3 t est un choix de pièces
4 """
5 def constraint3 (t):� �

Le tableau t résume les choix fait : t[0] désigne le nombre de pièces coins[0] choisi, t[1], le nombre de coins[1]...
La fonction renvoie renvoie true si le tableau t est compatible avec la contrainte 3 du cours.

Question 3.
Écrire la fonction� �

1 """
2 t : un tableau des nb de pièces choisis
3 coins : un tableau de valeurs de pièces
4 renvoie : le produit cartésien t . coins
5 """
6 def value(t, coins):� �

On peut voir l’algorithme de recherche de la plus grande somme obtenue sans utiliser de pièce de 200 euros
et en respectant les trois contraintes du cours comme l’exploration exhaustive d’un arbre de décision.

À la racine de cet arbre, on choisit le nombre de pièces de valeur 1 utilisées : 0 ou 1, dans les limites imposées
par le tableau nb_max .

Puis, pour chaque fils de la racine, on choisit le nombre de pièces de valeur 2 : 0, 1 ou 2.
Plus généralement, à chaque nouveau nœud, on choisit le nombre de pièces de la valeur suivante (5, 10, 20,

etc.), toujours en respectant les bornes indiquées par le tableau nb_max .

1

On poursuit ainsi l’exploration jusqu’aux feuilles de l’arbre, qui correspondent à des choix complets, c’est-
à-dire à un nombre de pièces fixé pour chaque valeur possible. Le respect de la contrainte 3 peut se faire au
moement où l’exploration atteint une feuille.

Ainsi, chaque chemin de la racine à une feuille représente une combinaison complète de pièces, autrement
dit une solution candidate.

Chaque niveau de l’arbre correspond à une valeur de pièce. Un nœud d’un niveau donné représente un choix
partiel ; il engendre l’exploration des choix restant à effectuer, sélectionne la meilleure solution parmi celles-ci
et la renvoie à son nœud parent.

Le tableau final obtenu correspond alors à la meilleure combinaison possible, au sens où la somme des valeurs
des pièces choisies est maximale.

Question 4.
Écrire la fonction� �

1 def best(coins , nb_max)� �
Elle prend en paramètre un système de monnaie et un tableau indiquant les contrainte 1 et 2 du cours (nb_max).
Elle explore l’arbre de décision complet et renvoie la combinaison de pièces respectant les 3 contraintes du cours
et permettant d’obtenir une somme maximale sans pièce de 200.� �

1 best(coins , nb_max) # renvoie ([0, 2, 1, 0, 2, 1, 1, 0], 199)� �

2

