
Terminaisons et corrections de boucles

Ivan Noyer

Lycée Thiers

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 1 / 26

1 Terminaison et variants

2 Correction et invariants

3 Compléments

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 2 / 26

Terminaison et variants

1 Terminaison et variants

2 Correction et invariants

3 Compléments

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 3 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.
On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,
qui diminue strictement après chaque itération/appel récursif interne,
et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.

On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,
qui diminue strictement après chaque itération/appel récursif interne,
et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.
On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,
qui diminue strictement après chaque itération/appel récursif interne,
et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.
On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,

qui diminue strictement après chaque itération/appel récursif interne,
et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.
On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,
qui diminue strictement après chaque itération/appel récursif interne,

et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.
On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,
qui diminue strictement après chaque itération/appel récursif interne,
et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Démontrer qu’une boucle termine

Montrer la terminaison d’un algorithme, c’est prouver que
l’algorithme termine quel que soit l’état initial.

Le problème se pose principalement pour les boucles conditionnelles
(while) et pour les fonctions récursives.
On identifie un variant , autrement dit une expression (c’est
souvent le simple contenu d’une variable)

qui est un entier positif tout au long de la boucle/récursion,
qui diminue strictement après chaque itération/appel récursif interne,
et qui, lorsqu’elle devient négative assure qu’on sort de la boucle.

On peut alors en conclure que la boucle termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 4 / 26

Terminaison et variants

Le variant est un compteur

� �
1 p,c=1,3

2 while c>0:

3 p=p*2

4 c=c-1� �
Détail des états :

La variable c joue le rôle d’un compteur.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 5 / 26

Terminaison et variants

Le variant est un compteur

Détail des états : (
c
3

) (
p
1

)
état initial(

c
2

) (
p
2

)
(
c
1

) (
p
4

)
(
c
0

) (
p
8

)
état final

La variable c joue le rôle d’un compteur.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 5 / 26

Terminaison et variants

Le variant est un compteur

Détail des états :

La variable c joue le rôle d’un compteur. Au départ c contient le
nombre d’itérations à effectuer. Après chaque itération, on enlève 1 à
ce nombre. La condition d’arrêt de la boucle teste si toutes les
itérations ont été faites.
Il est garanti que l’on sorte de la boucle car :

la valeur de c est un entier,
elle décrôıt strictement après chaque itération.
si c < 0, on n’entre pas dans la boucle.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 5 / 26

Terminaison et variants

Le variant est une variable

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 6 / 26

Terminaison et variants

Le variant est une variable

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �

Chercher une
quantité v qui vérifie
bien : être un entier
positif tout au long de
l’algorithme ; décrôıtre
strictement après
chaque itération. Si
v < 0 : on sort de la
boucle

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 6 / 26

Terminaison et variants

Le variant est une variable

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
Etat initial :deux variables n et d . On veut qu’à la fin : q et r

contiennent le quotient et le reste de la division euclidienne de la
valeur de n par la valeur de d .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 6 / 26

Terminaison et variants

Le variant est une variable

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
Succession des états avec n = 17 et d = 4 hors n et d qui ne sont pas
modifiés :(

q
0

) (
r
17

)
(état initial)

(
q
1

) (
r
13

)
(
q
2

) (
r
9

) (
q
4

) (
r
1

)
(état final)

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 6 / 26

Terminaison et variants

Le variant est une variable

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
Terminaison : Si d > 0 positif, le variant r (qui est entier) diminue à
chaque étape. Et si r < 0, alors r < d car d > 0 : et on sort de la
boucle. Terminaison OK

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 6 / 26

Terminaison et variants

Le variant n’est pas une variable

� �
1 #p est entier

2 assert type(p) == int

3 c = 0

4 while p > 0:

5 if c == 0:

6 p = p - 2

7 c = 1

8 else:

9 p = p + 1

10 c = 0� �
.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 7 / 26

Terminaison et variants

Le variant n’est pas une variable

� �
1 #p est entier

2 assert type(p) == int

3 c = 0

4 while p > 0:

5 if c == 0:

6 p = p - 2

7 c = 1

8 else:

9 p = p + 1

10 c = 0� �

Partant de l’état initial

(
p
5

)
, on

obtient successivement les états

[

(
c
0

)
;

(
p
5

)
] [

(
c
1

)
;

(
p
3

)
] [

(
c
0

)
;

(
p
4

)
]

[

(
c
1

)
;

(
p
2

)
] [

(
c
0

)
;

(
p
3

)
[

(
c
1

)
;

(
p
1

)
]

[

(
c
0

)
;

(
p
2

)
] [

(
c
1

)
;

(
p
0

)
]

.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 7 / 26

Terminaison et variants

Le variant n’est pas une variable

� �
1 #p est entier

2 assert type(p) == int

3 c = 0

4 while p > 0:

5 if c == 0:

6 p = p - 2

7 c = 1

8 else:

9 p = p + 1

10 c = 0� �
ni p ni c ne sont des quantités entières décroissantes.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 7 / 26

Terminaison et variants

Le variant n’est pas une variable

Les passages dans la boucle sont numérotés à partir de 1.

Notations : On note ci le contenu de c à l’étape i et pi le contenu
de p à la fin du passage i dans la boucle. p0 et c0 sont les valeurs
avant l’entrée dans la boucle pour la première fois.
On cherche ICI le variant comme une combinaison linéaire de pi et ci .

Candidat variant : 2pi + 3ci .
On montre que c’est une quantité entière strictement décroissante
qui, lorsqu’elle dévient négative, fait sortir de la boucle.

Sortie de boucle : Si au tour i , 2pi + 3ci < 0 alors
2pi < −3ci <= −3× 0 = 0. Donc sortie de boucle !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 8 / 26

Terminaison et variants

Le variant n’est pas une variable

Les passages dans la boucle sont numérotés à partir de 1.

Notations : On note ci le contenu de c à l’étape i et pi le contenu
de p à la fin du passage i dans la boucle. p0 et c0 sont les valeurs
avant l’entrée dans la boucle pour la première fois.
On cherche ICI le variant comme une combinaison linéaire de pi et ci .

Candidat variant : 2pi + 3ci .
On montre que c’est une quantité entière strictement décroissante
qui, lorsqu’elle dévient négative, fait sortir de la boucle.

Sortie de boucle : Si au tour i , 2pi + 3ci < 0 alors
2pi < −3ci <= −3× 0 = 0. Donc sortie de boucle !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 8 / 26

Terminaison et variants

Le variant n’est pas une variable

Les passages dans la boucle sont numérotés à partir de 1.

Notations : On note ci le contenu de c à l’étape i et pi le contenu
de p à la fin du passage i dans la boucle. p0 et c0 sont les valeurs
avant l’entrée dans la boucle pour la première fois.
On cherche ICI le variant comme une combinaison linéaire de pi et ci .

Candidat variant : 2pi + 3ci .
On montre que c’est une quantité entière strictement décroissante
qui, lorsqu’elle dévient négative, fait sortir de la boucle.

Sortie de boucle : Si au tour i , 2pi + 3ci < 0 alors
2pi < −3ci <= −3× 0 = 0. Donc sortie de boucle !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 8 / 26

Terminaison et variants

Le variant n’est pas une variable

Hérédité. A la fin de l’étape i : Si pi ≤ 0, alors on sort de la boucle
(pas de passage i + 1) et l’algorithme termine.
On suppose pi > 0.
On compare 2pi + 3ci avec 2pi+1 + 3ci+1.

1 Si ci = 0, alors ci+1 = 1, pi+1 = pi − 2 et 2pi + 3ci = 2pi .

0 ≤ 1 ≤ 2pi+1 + 3ci+1 = 2pi − 4 + 3 = 2pi − 1<2pi = 2pi + 3ci .

2 Si ci = 1, alors ci+1 = 0, pi+1 = pi + 1 et 2pi + 3ci = 2pi + 3.

0 ≤ 2pi ≤ 2pi+1+3ci+1 = 2pi +2+3×0 = 2pi +2<2pi +3 = 2pi +3ci .

La quantité 2pi + 3ci est entière, strictement décroissante et, si elle
négative, on sort de la boucle. L’algorithme termine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 9 / 26

Terminaison et variants

Exercice

Exercice

Ecrire un programme pour déterminer le rang du dernier terme strictement

positif de la suite récurrente définie par un+1 =
1

2
un − 3n.

Puis, montrer que le programme termine.

� �
1 u = a

2 n = 0

3 while u > 0:

4 u = 0.5*u-3*n

5 n+=1

6 n-=1� �

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 10 / 26

Terminaison et variants

Exercice

Exercice

Ecrire un programme pour déterminer le rang du dernier terme strictement

positif de la suite récurrente définie par un+1 =
1

2
un − 3n.

Puis, montrer que le programme termine.� �
1 u = a

2 n = 0

3 while u > 0:

4 u = 0.5*u-3*n

5 n+=1

6 n-=1� �
Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 10 / 26

Terminaison et variants

Exercice

Exercice

Ecrire un programme pour déterminer le rang du dernier terme strictement

positif de la suite récurrente définie par un+1 =
1

2
un − 3n.

Puis, montrer que le programme termine.� �
1 u = a

2 n = 0

3 while u > 0:

4 u = 0.5*u-3*n

5 n+=1

6 n-=1� �
On va étudier la terminaison

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 10 / 26

Terminaison et variants

Exercice

On étudie ui et ni. Soit ui le contenu de u à la fin du passage i
dans la boucle, ni celui de n. Avant l’entrée dans la boucle, les
valeurs sont u0, n0

ui n’est pas un entier (donc pas un variant). On montre que c’est une
quantité décroissante tendant vers −∞, donc qui sera négative à
partir d’un certain rang (d’où l’arrêt).

Il est immédiat que n0 = 0 et que ni = i

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 11 / 26

Terminaison et variants

Exercice

On étudie ui et ni. Soit ui le contenu de u à la fin du passage i
dans la boucle, ni celui de n. Avant l’entrée dans la boucle, les
valeurs sont u0, n0

ui n’est pas un entier (donc pas un variant). On montre que c’est une
quantité décroissante tendant vers −∞, donc qui sera négative à
partir d’un certain rang (d’où l’arrêt).

Il est immédiat que n0 = 0 et que ni = i

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 11 / 26

Terminaison et variants

Exercice

On étudie ui et ni. Soit ui le contenu de u à la fin du passage i
dans la boucle, ni celui de n. Avant l’entrée dans la boucle, les
valeurs sont u0, n0

ui n’est pas un entier (donc pas un variant). On montre que c’est une
quantité décroissante tendant vers −∞, donc qui sera négative à
partir d’un certain rang (d’où l’arrêt).

Il est immédiat que n0 = 0 et que ni = i

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 11 / 26

Terminaison et variants

Exercice

Cas de base. Si u0 ≤ 0, on n’entre pas dans la boucle et le
programme termine.
On suppose donc u0 > 0.

Hérédité. On supppose qu’il y a un passage i ≥ 1.

Si ui ≤ 0 le programme termine.
Supposons ui > 0. Comme i > 0, on a ni ≥ 1.
Alors

ui+1 =
1

2
ui − 3ni ≤

1

2
ui − 3 < ui − 1 car ui > 0 et ni > 0.

Le programme termine car
un < un−1 − 1 < un−2 − 2 < · · · < u1 − (n − 1) qui tend vers −∞
puisque u1 est une constante. Donc ui sera négatif a.p.c.r ce qui est la
condition de sortie de boucle.

Dans la preuve ci-dessus, on n’a pas vraiment identifié un variant au
sens de la définition (un n’est pas une quantité entière).

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 12 / 26

Terminaison et variants

Exercice

Cas de base. Si u0 ≤ 0, on n’entre pas dans la boucle et le
programme termine.
On suppose donc u0 > 0.

Hérédité. On supppose qu’il y a un passage i ≥ 1.

Si ui ≤ 0 le programme termine.
Supposons ui > 0. Comme i > 0, on a ni ≥ 1.
Alors

ui+1 =
1

2
ui − 3ni ≤

1

2
ui − 3 < ui − 1 car ui > 0 et ni > 0.

Le programme termine car
un < un−1 − 1 < un−2 − 2 < · · · < u1 − (n − 1) qui tend vers −∞
puisque u1 est une constante. Donc ui sera négatif a.p.c.r ce qui est la
condition de sortie de boucle.

Dans la preuve ci-dessus, on n’a pas vraiment identifié un variant au
sens de la définition (un n’est pas une quantité entière).

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 12 / 26

Terminaison et variants

Exercice

Cas de base. Si u0 ≤ 0, on n’entre pas dans la boucle et le
programme termine.
On suppose donc u0 > 0.

Hérédité. On supppose qu’il y a un passage i ≥ 1.

Si ui ≤ 0 le programme termine.

Supposons ui > 0. Comme i > 0, on a ni ≥ 1.
Alors

ui+1 =
1

2
ui − 3ni ≤

1

2
ui − 3 < ui − 1 car ui > 0 et ni > 0.

Le programme termine car
un < un−1 − 1 < un−2 − 2 < · · · < u1 − (n − 1) qui tend vers −∞
puisque u1 est une constante. Donc ui sera négatif a.p.c.r ce qui est la
condition de sortie de boucle.

Dans la preuve ci-dessus, on n’a pas vraiment identifié un variant au
sens de la définition (un n’est pas une quantité entière).

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 12 / 26

Terminaison et variants

Exercice

Cas de base. Si u0 ≤ 0, on n’entre pas dans la boucle et le
programme termine.
On suppose donc u0 > 0.

Hérédité. On supppose qu’il y a un passage i ≥ 1.

Si ui ≤ 0 le programme termine.
Supposons ui > 0. Comme i > 0, on a ni ≥ 1.
Alors

ui+1 =
1

2
ui − 3ni ≤

1

2
ui − 3 < ui − 1 car ui > 0 et ni > 0.

Le programme termine car
un < un−1 − 1 < un−2 − 2 < · · · < u1 − (n − 1) qui tend vers −∞
puisque u1 est une constante. Donc ui sera négatif a.p.c.r ce qui est la
condition de sortie de boucle.

Dans la preuve ci-dessus, on n’a pas vraiment identifié un variant au
sens de la définition (un n’est pas une quantité entière).

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 12 / 26

Terminaison et variants

Exercice

Cas de base. Si u0 ≤ 0, on n’entre pas dans la boucle et le
programme termine.
On suppose donc u0 > 0.

Hérédité. On supppose qu’il y a un passage i ≥ 1.

Si ui ≤ 0 le programme termine.
Supposons ui > 0. Comme i > 0, on a ni ≥ 1.
Alors

ui+1 =
1

2
ui − 3ni ≤

1

2
ui − 3 < ui − 1 car ui > 0 et ni > 0.

Le programme termine car
un < un−1 − 1 < un−2 − 2 < · · · < u1 − (n − 1) qui tend vers −∞
puisque u1 est une constante. Donc ui sera négatif a.p.c.r ce qui est la
condition de sortie de boucle.

Dans la preuve ci-dessus, on n’a pas vraiment identifié un variant au
sens de la définition (un n’est pas une quantité entière).

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 12 / 26

Terminaison et variants

Exercice

Cas de base. Si u0 ≤ 0, on n’entre pas dans la boucle et le
programme termine.
On suppose donc u0 > 0.

Hérédité. On supppose qu’il y a un passage i ≥ 1.

Si ui ≤ 0 le programme termine.
Supposons ui > 0. Comme i > 0, on a ni ≥ 1.
Alors

ui+1 =
1

2
ui − 3ni ≤

1

2
ui − 3 < ui − 1 car ui > 0 et ni > 0.

Le programme termine car
un < un−1 − 1 < un−2 − 2 < · · · < u1 − (n − 1) qui tend vers −∞
puisque u1 est une constante. Donc ui sera négatif a.p.c.r ce qui est la
condition de sortie de boucle.

Dans la preuve ci-dessus, on n’a pas vraiment identifié un variant au
sens de la définition (un n’est pas une quantité entière).

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 12 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucle infinie

Le programme suivant termine-t-il toujours ?

� �
1 # pour calculer 2^c

2 p,c = 1,n

3 while c != 0:

4 p = p * 2

5 c = c - 1� �

On met -1 dans c

Après le premier passage c

contient -2, après le troisième -3
etc...

En notant ci le contenu de c

après la i-ème itération on montre
ci = −(i + 1).

Cas de base c0 = −1 = −(0 + 1)

Hérédité. Si pour i ∈ N,
ci = −(i + 1), on entre dans la
boucle (ci ̸= 0). Alors
ci+1 = ci − 1 = −(i + 1)− 1 =
−((i + 1)− 1). OK.

Donc ci n’est jamais nul. Boucle
infinie.Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 13 / 26

Terminaison et variants

Boucles for

Une boucle for termine toujours si ses instructions internes terminent
et si la liste sur laquelle on boucle n’est pas modifiée en cours
d’exécution.
Ceci termine :� �

1 res , t = 0, [1,2,3,4]

2 for e in t:

3 res+=e� �
Mais pas cela (cas ou un appel interne ne termine pas) :� �

1 def f(x):

2 while x > 0:

3 x = x + 1

4 return x

5 res , t = 0, [1,2,3]

6 for e in t:

7 res += f(e)� �
Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 14 / 26

Terminaison et variants

Boucle for

Exercice

Imaginer une situation de boucle for pour laquelle la liste de référence est
modifiée dynamiquement, entrainant une boucle infinie.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 15 / 26

Terminaison et variants

Boucle for

Exercice

Imaginer une situation de boucle for pour laquelle la liste de référence est
modifiée dynamiquement, entrainant une boucle infinie.� �

1 t = [1,2,3]

2 for i in t:

3 t.append(i)� �

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 15 / 26

Correction et invariants

1 Terminaison et variants

2 Correction et invariants

3 Compléments

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 16 / 26

Correction et invariants

Position du problème

Objectif : Déterminer si un programme est correct vis à vis de sa
spécification (c.a.d s’il fait bien ce qu’on attend de lui).

Moyen : On utilise un invariant de boucle, c’est-à-dire une propriété :

1 qui est vérifiée avant d’entrer dans la boucle,
2 qui si elle est vérifiée avant une itération est vérifiée après celle-ci,
3 qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que

le programme est correct.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 17 / 26

Correction et invariants

Position du problème

Objectif : Déterminer si un programme est correct vis à vis de sa
spécification (c.a.d s’il fait bien ce qu’on attend de lui).

Moyen : On utilise un invariant de boucle, c’est-à-dire une propriété :

1 qui est vérifiée avant d’entrer dans la boucle,
2 qui si elle est vérifiée avant une itération est vérifiée après celle-ci,
3 qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que

le programme est correct.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 17 / 26

Correction et invariants

Position du problème

Objectif : Déterminer si un programme est correct vis à vis de sa
spécification (c.a.d s’il fait bien ce qu’on attend de lui).

Moyen : On utilise un invariant de boucle, c’est-à-dire une propriété :
1 qui est vérifiée avant d’entrer dans la boucle,

2 qui si elle est vérifiée avant une itération est vérifiée après celle-ci,
3 qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que

le programme est correct.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 17 / 26

Correction et invariants

Position du problème

Objectif : Déterminer si un programme est correct vis à vis de sa
spécification (c.a.d s’il fait bien ce qu’on attend de lui).

Moyen : On utilise un invariant de boucle, c’est-à-dire une propriété :
1 qui est vérifiée avant d’entrer dans la boucle,
2 qui si elle est vérifiée avant une itération est vérifiée après celle-ci,

3 qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que
le programme est correct.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 17 / 26

Correction et invariants

Position du problème

Objectif : Déterminer si un programme est correct vis à vis de sa
spécification (c.a.d s’il fait bien ce qu’on attend de lui).

Moyen : On utilise un invariant de boucle, c’est-à-dire une propriété :
1 qui est vérifiée avant d’entrer dans la boucle,
2 qui si elle est vérifiée avant une itération est vérifiée après celle-ci,
3 qui lorsqu’elle est vérifiée en sortie de boucle permet d’en déduire que

le programme est correct.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 17 / 26

Correction et invariants

Exercice : calcul de 2n

Montrer que ce programme de calcul de 2n est correct pour tout entier
n ≥ 0, c.a.d qu’en sortie de boucle p contient 2n.� �

1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice : calcul de 2n

� �
1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

Avant l’entrée dans la boucle : c0 = n, p0 = 1.

.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice : calcul de 2n

� �
1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

Avant l’entrée dans la boucle : c0 = n, p0 = 1.

Après l’itération i : ci+1 = ci − 1 et pi+1 = 2pi .

.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice : calcul de 2n

� �
1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

Avant l’entrée dans la boucle : c0 = n, p0 = 1.

Après l’itération i : ci+1 = ci − 1 et pi+1 = 2pi .

Invariant potentiel I (i) : ci ≥ 0 et pi = 2n−ci . Astuce : faire

figurer le signe de c dans l’invariant ! .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice : calcul de 2n

� �
1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

Invariant potentiel I (i) : ci ≥ 0 et pi = 2n−ci . Astuce : faire

figurer le signe de c dans l’invariant !

Cas de base, itération 0 (avant l’entrée dans la boucle) : c0 = n ≥ 0,
p0 = 1 = 20 = 2n−c0 : OK.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice : calcul de 2n

� �
1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

Invariant potentiel I (i) : ci ≥ 0 et pi = 2n−ci . Astuce : faire

figurer le signe de c dans l’invariant ! .

Hérédité. On suppose I (i) vérifié.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice : calcul de 2n

� �
1 p,c = 1,n

2 while c > 0:

3 p = p * 2

4 c = c - 1� �
On note ci , pi les contenus des variables c et p après l’itération i .

Invariant potentiel I (i) : ci ≥ 0 et pi = 2n−ci . Astuce : faire

figurer le signe de c dans l’invariant ! .

Hérédité. On suppose I (i) vérifié.
1 Si on entre dans la boucle, alors ci > 0 et ci+1 = ci − 1 ≥ 0. De plus

pi+1 = 2pi = 2n−ci+1 = 2n−(ci−1) = 2n−ci+1 . Donc I (i + 1) vérifié.
2 Si on sort de la boucle, alors ci ≤ 0 (condition de sortie) et ci ≥ 0 (par

I (i)) donc ci = 0, donc pi = 2n−ci = 2n.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 18 / 26

Correction et invariants

Exercice 2 : division euclidienne

Montrer que ce programme de division euclidienne d’un nombre entier
naturel n ≥ 0 par un entier d > 0 est correct.� �

1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �

On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.
Hérédité. On suppose l(i) vérifié (i ≥ 0).

1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,
qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Exercice 2 : division euclidienne

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.

Hérédité. On suppose l(i) vérifié (i ≥ 0).

1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,
qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Exercice 2 : division euclidienne

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.

Hérédité. On suppose l(i) vérifié (i ≥ 0).

1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,
qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Exercice 2 : division euclidienne

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.

Hérédité. On suppose l(i) vérifié (i ≥ 0).

1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,
qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Exercice 2 : division euclidienne

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.

Hérédité. On suppose l(i) vérifié (i ≥ 0).

1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,
qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Exercice 2 : division euclidienne

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.

Hérédité. On suppose l(i) vérifié (i ≥ 0).
1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,

qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Exercice 2 : division euclidienne

� �
1 #division euclidienne n/d; d>0 par hyp.

2 q,r=0,n

3 while r >= d:

4 q = q + 1

5 r = r - d� �
On note ri , qi les contenus des variables r,q après l’itération i .

Invariant de boucle : I (i) = qi ≥ 0 ∧ ri ≥ 0 ∧ n = qid + ri .

Entrée dans la boucle q0 = 0 ≥ 0; r0 = n ≥ 0 et r0 + q0d = n : OK.

Hérédité. On suppose l(i) vérifié (i ≥ 0).
1 Si on entre dans la boucle. ri ≥ d . ri+1 = ri − d ≥ 0,

qi+1 = qi + 1 ≥ qi ≥ 0. Et
ri+1 = ri − d = n − qid − d = n − (qi + 1)d = n − qi+1d : OK.

2 Sortie. ri ≥ 0 et ri < d et qi ≥ 0 et n = qid + ri .

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 19 / 26

Correction et invariants

Terminaison d’un calcul de produit

� �
1 x = a

2 y = b

3 r = 0

4 while y > 0 :

5 r = r+x

6 y = y-1

7 #on veut que r contienne la valeur de a * b� �
Démonstration.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 20 / 26

Correction et invariants

Terminaison d’un calcul de produit

� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Variant : yi .

y0 entier positif

Si yi > 0 (sinon on sort de la boucle), alors yi+1 = yi − 1 < yi ;
yi+1 ≥ 1− 1 = 0 et yi+1 ∈ N.
Terminaison prouvée car (yi) est une suite d’entiers positifs
strictement décroissante.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 20 / 26

Correction et invariants

Terminaison d’un calcul de produit

� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Variant : yi .

y0 entier positif

Si yi > 0 (sinon on sort de la boucle), alors yi+1 = yi − 1 < yi ;
yi+1 ≥ 1− 1 = 0 et yi+1 ∈ N.

Terminaison prouvée car (yi) est une suite d’entiers positifs
strictement décroissante.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 20 / 26

Correction et invariants

Terminaison d’un calcul de produit

� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Variant : yi .

y0 entier positif

Si yi > 0 (sinon on sort de la boucle), alors yi+1 = yi − 1 < yi ;
yi+1 ≥ 1− 1 = 0 et yi+1 ∈ N.
Terminaison prouvée car (yi) est une suite d’entiers positifs
strictement décroissante.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 20 / 26

Correction et invariants

Correction d’un calcul de produit� �
1 x = a

2 y = b

3 r = 0

4 while y > 0 :

5 r = r+x

6 y = y-1

7 #on veut que r contienne la valeur de a * b� �
Démonstration.

Invariant : Inv(i) : (ri + xi × yi = a× b) ∧ (yi ≥ 0). Remarque : xi
constant.

r0 + x0 × y0 = 0 + a× b. Et y0 = b > 0. Cas de base : OK

Si Inv(i) après le passage i :

Si yi > 0, il y a un passage i +1. yi+1 = yi −1 et ri+1 = ri + xi = ri + a.
Comme yi > 0, on a yi+1 = yi − 1 ≥ 0. OK
Alors ri+1 + a× yi+1 = ri + a+ a(yi − 1) = ri + ayi = a× b : hérédité
OK
si yi ≤ 0 alors comme yi ≥ 0, yi = 0. Et on a
ri = ri + 0 = ri + a× yi = a× b. On a bien ce qu’on veut !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 21 / 26

Correction et invariants

Correction d’un calcul de produit� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Invariant : Inv(i) : (ri + xi × yi = a× b) ∧ (yi ≥ 0). Remarque : xi
constant.

r0 + x0 × y0 = 0 + a× b. Et y0 = b > 0. Cas de base : OK

Si Inv(i) après le passage i :

Si yi > 0, il y a un passage i +1. yi+1 = yi −1 et ri+1 = ri + xi = ri + a.
Comme yi > 0, on a yi+1 = yi − 1 ≥ 0. OK
Alors ri+1 + a× yi+1 = ri + a+ a(yi − 1) = ri + ayi = a× b : hérédité
OK
si yi ≤ 0 alors comme yi ≥ 0, yi = 0. Et on a
ri = ri + 0 = ri + a× yi = a× b. On a bien ce qu’on veut !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 21 / 26

Correction et invariants

Correction d’un calcul de produit� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Invariant : Inv(i) : (ri + xi × yi = a× b) ∧ (yi ≥ 0). Remarque : xi
constant.

r0 + x0 × y0 = 0 + a× b. Et y0 = b > 0. Cas de base : OK

Si Inv(i) après le passage i :

Si yi > 0, il y a un passage i +1. yi+1 = yi −1 et ri+1 = ri + xi = ri + a.
Comme yi > 0, on a yi+1 = yi − 1 ≥ 0. OK
Alors ri+1 + a× yi+1 = ri + a+ a(yi − 1) = ri + ayi = a× b : hérédité
OK
si yi ≤ 0 alors comme yi ≥ 0, yi = 0. Et on a
ri = ri + 0 = ri + a× yi = a× b. On a bien ce qu’on veut !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 21 / 26

Correction et invariants

Correction d’un calcul de produit� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Invariant : Inv(i) : (ri + xi × yi = a× b) ∧ (yi ≥ 0). Remarque : xi
constant.

r0 + x0 × y0 = 0 + a× b. Et y0 = b > 0. Cas de base : OK

Si Inv(i) après le passage i :

Si yi > 0, il y a un passage i +1. yi+1 = yi −1 et ri+1 = ri + xi = ri + a.
Comme yi > 0, on a yi+1 = yi − 1 ≥ 0. OK
Alors ri+1 + a× yi+1 = ri + a+ a(yi − 1) = ri + ayi = a× b : hérédité
OK

si yi ≤ 0 alors comme yi ≥ 0, yi = 0. Et on a
ri = ri + 0 = ri + a× yi = a× b. On a bien ce qu’on veut !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 21 / 26

Correction et invariants

Correction d’un calcul de produit� �
1 while y > 0 :# on suppose a,b entiers , a>=0, b>0

2 r,y = r+x, y-1� �
Démonstration.

Invariant : Inv(i) : (ri + xi × yi = a× b) ∧ (yi ≥ 0). Remarque : xi
constant.

r0 + x0 × y0 = 0 + a× b. Et y0 = b > 0. Cas de base : OK

Si Inv(i) après le passage i :

Si yi > 0, il y a un passage i +1. yi+1 = yi −1 et ri+1 = ri + xi = ri + a.
Comme yi > 0, on a yi+1 = yi − 1 ≥ 0. OK
Alors ri+1 + a× yi+1 = ri + a+ a(yi − 1) = ri + ayi = a× b : hérédité
OK
si yi ≤ 0 alors comme yi ≥ 0, yi = 0. Et on a
ri = ri + 0 = ri + a× yi = a× b. On a bien ce qu’on veut !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 21 / 26

Correction et invariants

Conclusion

On retient :

Pour montrer la Terminaison on cherche un variant, c.a.d une
quantité entière (le plus souvent) positive strictement décroissante.
Lorsque le variant devient négatif, c’est le signe qu’on sort de la
boucle.

Pour montrer la Correction on cherche un invariant, c.a.d une
propriété vérifiée à chaque passage dans la boucle.
Lorsqu’on sort de la boucle, la condition de sortie + l’invariant
attestent que le programme fait bien ce qu’on en attend.

Le variant est une suite de nombres indicée par les passages dans la
boucle, l’invariant est suite de formules logiques indicées par les
passages dans la boucle.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 22 / 26

Compléments

1 Terminaison et variants

2 Correction et invariants

3 Compléments

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 23 / 26

Compléments

Syracuse

Exercice

Etablir la terminaison de� �
1 def syraccuse(n):

2 assert n>=0 and type(n)== int

3 x=n

4 while x!=1:

5 if x%2==0:

6 x=x//2

7 else:

8 x=3*x+1

9 return x� �

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 24 / 26

Compléments

Syracuse

En 1928, Lothar Collatz s’intéresse aux itérations dans les nombres
entiers, qu’il représente au moyen de graphes et d’hypergraphes. Il
invente alors le problème 3x + 1, et le présentera souvent ensuite dans
ses séminaires.

En 1952, lors d’une visite à Hambourg, Collatz explique son problème
à Helmut Hasse.
Ce dernier le diffuse en Amérique à l’université de Syracuse : la suite
de Collatz prend alors le nom de ≪ suite de Syracuse ≫ .
Entre temps, le mathématicien polonais Stanislas Ulam le répand
dans le Laboratoire national de Los Alamos.
Dans les années 1960, le problème est repris par le mathématicien
Shizuo Kakutani qui le diffuse dans les universités Yale et Chicago.
Cette conjecture mobilisa tant les mathématiciens durant les années
1960, en pleine guerre froide, qu’une plaisanterie courut selon laquelle
ce problème faisait partie d’un complot soviétique visant à ralentir la
recherche américaine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 25 / 26

Compléments

Syracuse

En 1928, Lothar Collatz s’intéresse aux itérations dans les nombres
entiers, qu’il représente au moyen de graphes et d’hypergraphes. Il
invente alors le problème 3x + 1, et le présentera souvent ensuite dans
ses séminaires.
En 1952, lors d’une visite à Hambourg, Collatz explique son problème
à Helmut Hasse.

Ce dernier le diffuse en Amérique à l’université de Syracuse : la suite
de Collatz prend alors le nom de ≪ suite de Syracuse ≫ .
Entre temps, le mathématicien polonais Stanislas Ulam le répand
dans le Laboratoire national de Los Alamos.
Dans les années 1960, le problème est repris par le mathématicien
Shizuo Kakutani qui le diffuse dans les universités Yale et Chicago.
Cette conjecture mobilisa tant les mathématiciens durant les années
1960, en pleine guerre froide, qu’une plaisanterie courut selon laquelle
ce problème faisait partie d’un complot soviétique visant à ralentir la
recherche américaine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 25 / 26

Compléments

Syracuse

En 1928, Lothar Collatz s’intéresse aux itérations dans les nombres
entiers, qu’il représente au moyen de graphes et d’hypergraphes. Il
invente alors le problème 3x + 1, et le présentera souvent ensuite dans
ses séminaires.
En 1952, lors d’une visite à Hambourg, Collatz explique son problème
à Helmut Hasse.
Ce dernier le diffuse en Amérique à l’université de Syracuse : la suite
de Collatz prend alors le nom de ≪ suite de Syracuse ≫ .

Entre temps, le mathématicien polonais Stanislas Ulam le répand
dans le Laboratoire national de Los Alamos.
Dans les années 1960, le problème est repris par le mathématicien
Shizuo Kakutani qui le diffuse dans les universités Yale et Chicago.
Cette conjecture mobilisa tant les mathématiciens durant les années
1960, en pleine guerre froide, qu’une plaisanterie courut selon laquelle
ce problème faisait partie d’un complot soviétique visant à ralentir la
recherche américaine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 25 / 26

Compléments

Syracuse

En 1928, Lothar Collatz s’intéresse aux itérations dans les nombres
entiers, qu’il représente au moyen de graphes et d’hypergraphes. Il
invente alors le problème 3x + 1, et le présentera souvent ensuite dans
ses séminaires.
En 1952, lors d’une visite à Hambourg, Collatz explique son problème
à Helmut Hasse.
Ce dernier le diffuse en Amérique à l’université de Syracuse : la suite
de Collatz prend alors le nom de ≪ suite de Syracuse ≫ .
Entre temps, le mathématicien polonais Stanislas Ulam le répand
dans le Laboratoire national de Los Alamos.

Dans les années 1960, le problème est repris par le mathématicien
Shizuo Kakutani qui le diffuse dans les universités Yale et Chicago.
Cette conjecture mobilisa tant les mathématiciens durant les années
1960, en pleine guerre froide, qu’une plaisanterie courut selon laquelle
ce problème faisait partie d’un complot soviétique visant à ralentir la
recherche américaine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 25 / 26

Compléments

Syracuse

En 1928, Lothar Collatz s’intéresse aux itérations dans les nombres
entiers, qu’il représente au moyen de graphes et d’hypergraphes. Il
invente alors le problème 3x + 1, et le présentera souvent ensuite dans
ses séminaires.
En 1952, lors d’une visite à Hambourg, Collatz explique son problème
à Helmut Hasse.
Ce dernier le diffuse en Amérique à l’université de Syracuse : la suite
de Collatz prend alors le nom de ≪ suite de Syracuse ≫ .
Entre temps, le mathématicien polonais Stanislas Ulam le répand
dans le Laboratoire national de Los Alamos.
Dans les années 1960, le problème est repris par le mathématicien
Shizuo Kakutani qui le diffuse dans les universités Yale et Chicago.

Cette conjecture mobilisa tant les mathématiciens durant les années
1960, en pleine guerre froide, qu’une plaisanterie courut selon laquelle
ce problème faisait partie d’un complot soviétique visant à ralentir la
recherche américaine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 25 / 26

Compléments

Syracuse

En 1928, Lothar Collatz s’intéresse aux itérations dans les nombres
entiers, qu’il représente au moyen de graphes et d’hypergraphes. Il
invente alors le problème 3x + 1, et le présentera souvent ensuite dans
ses séminaires.
En 1952, lors d’une visite à Hambourg, Collatz explique son problème
à Helmut Hasse.
Ce dernier le diffuse en Amérique à l’université de Syracuse : la suite
de Collatz prend alors le nom de ≪ suite de Syracuse ≫ .
Entre temps, le mathématicien polonais Stanislas Ulam le répand
dans le Laboratoire national de Los Alamos.
Dans les années 1960, le problème est repris par le mathématicien
Shizuo Kakutani qui le diffuse dans les universités Yale et Chicago.
Cette conjecture mobilisa tant les mathématiciens durant les années
1960, en pleine guerre froide, qu’une plaisanterie courut selon laquelle
ce problème faisait partie d’un complot soviétique visant à ralentir la
recherche américaine.

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 25 / 26

Compléments

Problème de l’arrêt.

Supposons qu’il existe une fonction termine qui prend en paramètres
un nom de fonction et retourne un bouléen indiquant si la fonction
termine dans tous les cas (True) ou non False.

On considère la fonction� �
1 def absurde ():

2 while termine('absurde '):
3 pass

4 return 1� �
Si termine(’absurde’) retourne True, c’est à dire si l’appel
absurde() termine, alors l’appel absurde() rentre dans la boucle
infinie sans plus en sortir : ABSURDE

Si termine(’absurde’) retourne False, c’est à dire si l’appel
absurde() ne termine pas, alors l’appel absurde() retourne 1 donc
termine : ABSURDE

Bref, la recherche de variant est un art non automatisable !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 26 / 26

Compléments

Problème de l’arrêt.

Supposons qu’il existe une fonction termine qui prend en paramètres
un nom de fonction et retourne un bouléen indiquant si la fonction
termine dans tous les cas (True) ou non False.
On considère la fonction� �

1 def absurde ():

2 while termine('absurde '):
3 pass

4 return 1� �

Si termine(’absurde’) retourne True, c’est à dire si l’appel
absurde() termine, alors l’appel absurde() rentre dans la boucle
infinie sans plus en sortir : ABSURDE

Si termine(’absurde’) retourne False, c’est à dire si l’appel
absurde() ne termine pas, alors l’appel absurde() retourne 1 donc
termine : ABSURDE

Bref, la recherche de variant est un art non automatisable !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 26 / 26

Compléments

Problème de l’arrêt.

Supposons qu’il existe une fonction termine qui prend en paramètres
un nom de fonction et retourne un bouléen indiquant si la fonction
termine dans tous les cas (True) ou non False.
On considère la fonction� �

1 def absurde ():

2 while termine('absurde '):
3 pass

4 return 1� �
Si termine(’absurde’) retourne True, c’est à dire si l’appel
absurde() termine, alors l’appel absurde() rentre dans la boucle
infinie sans plus en sortir : ABSURDE

Si termine(’absurde’) retourne False, c’est à dire si l’appel
absurde() ne termine pas, alors l’appel absurde() retourne 1 donc
termine : ABSURDE

Bref, la recherche de variant est un art non automatisable !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 26 / 26

Compléments

Problème de l’arrêt.

Supposons qu’il existe une fonction termine qui prend en paramètres
un nom de fonction et retourne un bouléen indiquant si la fonction
termine dans tous les cas (True) ou non False.
On considère la fonction� �

1 def absurde ():

2 while termine('absurde '):
3 pass

4 return 1� �
Si termine(’absurde’) retourne True, c’est à dire si l’appel
absurde() termine, alors l’appel absurde() rentre dans la boucle
infinie sans plus en sortir : ABSURDE

Si termine(’absurde’) retourne False, c’est à dire si l’appel
absurde() ne termine pas, alors l’appel absurde() retourne 1 donc
termine : ABSURDE

Bref, la recherche de variant est un art non automatisable !

Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 26 / 26

Compléments

Problème de l’arrêt.

Supposons qu’il existe une fonction termine qui prend en paramètres
un nom de fonction et retourne un bouléen indiquant si la fonction
termine dans tous les cas (True) ou non False.
On considère la fonction� �

1 def absurde ():

2 while termine('absurde '):
3 pass

4 return 1� �
Si termine(’absurde’) retourne True, c’est à dire si l’appel
absurde() termine, alors l’appel absurde() rentre dans la boucle
infinie sans plus en sortir : ABSURDE

Si termine(’absurde’) retourne False, c’est à dire si l’appel
absurde() ne termine pas, alors l’appel absurde() retourne 1 donc
termine : ABSURDE

Bref, la recherche de variant est un art non automatisable !
Ivan Noyer (Lycée Thiers) Terminaisons et corrections de boucles 26 / 26

	Terminaison et variants
	Correction et invariants
	Compléments

