Algorithmes gloutons

Lycée Thiers

v /coithmes gloutons

@ Généralités

© Exemple du rendu de monnaie

o /coithmes gloutons

@ Généralités

s /coithmes gloutons

Présentation

e Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d'obtenir un résultat optimum
global (Wikipedia).

1c{J

Présentation

e Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d'obtenir un résultat optimum
global (Wikipedia).

@ Exemples classiques :

1|

Présentation

e Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d'obtenir un résultat optimum
global (Wikipedia).

@ Exemples classiques :

e Rendu de monnaie;

1|

Présentation

e Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d'obtenir un résultat optimum
global (Wikipedia).

@ Exemples classiques :

e Rendu de monnaie;
e Coloration des sommets d'un graphe;

1|

Présentation

e Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d'obtenir un résultat optimum
global (Wikipedia).

@ Exemples classiques :

e Rendu de monnaie;
e Coloration des sommets d'un graphe;
o Algorithme de Dijkstra pour la recherche de PCC;

1|

Présentation

e Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d'obtenir un résultat optimum
global (Wikipedia).

@ Exemples classiques :

e Rendu de monnaie;
e Coloration des sommets d'un graphe;
o Algorithme de Dijkstra pour la recherche de PCC;

@ Un algorithme glouton fournit le plus souvent une solution au
probleme. Dans les cas ol il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

1|

Exemple d’heuristique gloutonne

05

04

03

02

01

0.0

-2 0 2 4 6 [

@ Un algorithme glouton peut retourner une solution
sous-optimale : en partant du point A et en cherchant a
monter selon la plus forte pente, un algorithme glouton
trouvera le maximum local m, mais pas le maximum global M.

5 T /coithmes gloutons

Exemple d’heuristique gloutonne

05

04

03

02

01

0.0

-2 0 2 4 6 [

Un algorithme glouton peut retourner une solution
sous-optimale : en partant du point A et en cherchant a
monter selon la plus forte pente, un algorithme glouton
trouvera le maximum local m, mais pas le maximum global M.
Il faut bien comprendre que méme si elle ne fournit pas
toujours de solution optimale, une stratégie gloutonne est
souvent adoptée en raison de la simplicité de sa mise en
ceuvre.

5 T /coithmes gloutons

© Exemple du rendu de monnaie

o 1o /coithmes gloutons

Présentation

@ Soit un ensemble C (pour < coins >) de n valeurs entieres de
billets et pieces de monnaies v < vp < -+ < v,. Par exemple
C = {1€,2€,5€,10€,20€,100€,200€ }

7 /coithmes gloutons

Présentation

@ Soit un ensemble C (pour < coins >) de n valeurs entieres de
billets et pieces de monnaies v; < vp < -+ < v,. Par exemple
C = {1€,2€,5€,10€,20€,100€,200€ }

@ Le probleme du rendu de monnaie consiste a déterminer le
nombre minimal de billets et de pieces pour rendre une somme
donnée.

7 /coithmes gloutons

Présentation

@ Soit un ensemble C (pour < coins >) de n valeurs entieres de
billets et pieces de monnaies v; < vp < -+ < v,. Par exemple
C = {1€,2€,5€,10€,20€,100€,200€ }

@ Le probleme du rendu de monnaie consiste a déterminer le
nombre minimal de billets et de pieces pour rendre une somme
donnée.

@ Par exemple, la somme de 49€ peut étre rendue en utilisant
49 pieces de 1€, ou 2 billets de 20€, un billet de 5€ et deux
pieces de 2€.

7 /coithmes gloutons

Présentation

@ Soit un ensemble C (pour < coins >) de n valeurs entieres de
billets et pieces de monnaies v; < vp < -+ < v,. Par exemple
C = {1€,2€,5€,10€,20€,100€,200€ }

@ Le probleme du rendu de monnaie consiste a déterminer le
nombre minimal de billets et de pieces pour rendre une somme
donnée.

@ Par exemple, la somme de 49€ peut étre rendue en utilisant
49 pieces de 1€, ou 2 billets de 20€, un billet de 5€ et deux
pieces de 2€.

@ Donc 5 billets/pieces rendues VS 49. Ce nombre 5 est
d’ailleurs le plus petit qu'on puisse trouver pour le systeme de
pieces C.

7 /coithmes gloutons

Précisions

@ Pour raison de concision, nous emploierons dans toute la suite
le terme < piéce > au lieu de « piece ou billet .

s o /coithmes gloutons

Précisions

@ Pour raison de concision, nous emploierons dans toute la suite
le terme < piéce > au lieu de « piece ou billet .

@ De plus nous supposons que le stock de chaque valeur de piece
est illimité, ce qui ne reflete que partiellement la réalité (dans
un DAB, il y a un nombre fini de billets de 10,20,50 et 100€).

s o /coithmes gloutons

Précisions

@ Pour raison de concision, nous emploierons dans toute la suite
le terme < piéce > au lieu de « piece ou billet .

@ De plus nous supposons que le stock de chaque valeur de piece
est illimité, ce qui ne reflete que partiellement la réalité (dans
un DAB, il y a un nombre fini de billets de 10,20,50 et 100€).

@ La solution calculée par I'algorithme que nous présentons et
donc une solution théorique qui ne tient pas compte de la
réalité du stock.

s o /coithmes gloutons

Stratégie

@ On choisit d'abord les piéces qui permettent de rendre la plus
grande valeur possible sur la somme a rendre. Dans |I'exemple
des 49€, il s'agit de deux billets de 20€.

o 1 [/coithmes gloutons

Stratégie

@ On choisit d'abord les piéces qui permettent de rendre la plus
grande valeur possible sur la somme a rendre. Dans |I'exemple
des 49€, il s'agit de deux billets de 20€.

@ Il reste alors a rendre 9€. On choisit la plus grande valeur de
piece plus petite que 9, soit 5€. On rend donc un billet de 5
(et pas 2 car 2 x 5 > 9).

o 1 [/coithmes gloutons

Stratégie

@ On choisit d'abord les piéces qui permettent de rendre la plus
grande valeur possible sur la somme a rendre. Dans |I'exemple
des 49€, il s'agit de deux billets de 20€.

@ Il reste alors a rendre 9€. On choisit la plus grande valeur de
piece plus petite que 9, soit 5€. On rend donc un billet de 5
(et pas 2 car 2 x 5 > 9).

@ Enfin la plus grande valeur de piéce plus petite que les 4€ a
rendre est 2€. On peut en rendre deux, ce qui rameéne la
somme a rendre a 0€. On s'arréte donc la.

o1 /coithmes gloutons

Généralités

Code (version impérative)

1def greedy_change (coins, v):
2

3 n = len(coins)

4

5

6 change = [0] * n

7 cur = v

8 i = n-1

9 while cur > O:

1o ¢ = coins[i]

11 if cur < c:

12 i-=

13 elise:

14 change [i]+=1

15 cur = cur -c

16 return change

. J

10,

Parametres et variables

@ Parameétres :

111 A corithmes gloutons

Parametres et variables

@ Parameétres :

° i : i€ .
coins | : tableau des valeurs de piéces

111 A corithmes gloutons

Parametres et variables

@ Parameétres :

coins | : tableau des valeurs de piéces.

]
° : valeur a rembouser

111 A corithmes gloutons

Parametres et variables

@ Parameétres :

° i : i€ .
coins | : tableau des valeurs de piéces

° : valeur a rembouser
@ Variables locales :

111 A corithmes gloutons

Parametres et variables

@ Parameétres :

e | coins | : tableau des valeurs de piéces.

° : valeur a rembouser
@ Variables locales :
° : numéro de valeur courante de piece;

111 A corithmes gloutons

Parametres et variables

@ Parameétres :

coins | : tableau des valeurs de piéces.
: valeur a rembouser

[<]

@ Variables locales :

\i‘

: numéro de valeur courante de piece;

{

o | change[i] |: nb de piéces de la valeur courante;

111 A corithmes gloutons

Parametres et variables

@ Parameétres :

coins | : tableau des valeurs de piéces.

]
° . valeur a rembouser

[<]

@ Variables locales :

(=]

@ | i|: numéro de valeur courante de piéce;

o | change[i] |: nb de pieces de la valeur courante;

e [cur|: somme restant a rendre.

111 A corithmes gloutons

Correction du programme

@ Un variant de boucle est . Terminaison OK.

12,1

Correction du programme

@ Un variant de boucle est . Terminaison OK.
@ La condition | coins [0]==1 | assure la correction (principe :

apcr, on peut rendre autant de pieces de 1€ que la somme
restante).

12,1

Correction du programme

@ Un variant de boucle est . Terminaison OK.
@ La condition | coins [0]==1 | assure la correction (principe :

apcr, on peut rendre autant de pieces de 1€ que la somme
restante).

o Le fait que | coins[0]==1 | assure aussi que | i | reste positif
et donc I'acces valide au tableau .

12,1

Optimalité

Proposition

Si| coins| décrit le systeme monétaire de la zone euro, alors le
programme ’ greedy_change | cacule un rendu de monnaie avec le
nombre minimal d’éléments.

Remarque

Un systéeme de pieces qui, tel celui de la zone euro, permet un
rendu optimal est qualifié de canonique.

11|

Optimalité (preuve)

Certaines combinaison de piéces ne peuvent se trouver dans une
solution optimale :

contrainte 1 Une piece de valeur val = 1,5,10,50 ou 100 n'est
jamais utilisé deux fois dans une solution optimale.
En effet, pour chacune de ces valeurs il est plus
avantageux de rendre une piéce de valeur 2val plutét
que deux de valeur val.

12|

Optimalité (preuve)

Certaines combinaison de piéces ne peuvent se trouver dans une

solution optimale :

contrainte 1 Une piece de valeur val = 1,5,10,50 ou 100 n'est
jamais utilisé deux fois dans une solution optimale.

contrainte 2 Une piéce de valeur 2 ou 20 n’est jamais utilisée 3
fois dans une solution optimale. En effet 3 piéces de
valeur 2 sont avantageusement remplacée par par
une piece de valeur 1 et une de 5; 3 pieces de valeur
20 sont remplacées par une 10 et une de 50.

4 A corithmes gloutons

Optimalité (preuve)

Certaines combinaison de piéces ne peuvent se trouver dans une

solution optimale :

contrainte 1 Une piece de valeur val = 1,5,10,50 ou 100 n'est
jamais utilisé deux fois dans une solution optimale.

contrainte 2 Une piéce de valeur 2 ou 20 n’est jamais utilisée 3
fois dans une solution optimale.

contrainte 3 Une piéce de valeur 1 n'accompagne jamais deux
pieces de valeur 2 : on pourrait remplacer I'ensemble
par une piece de 5. Une piece de valeur 10
n'accompagne jamais deux piéces de valeur 20 : on
pourrait remplacer |'ensemble par une piece de 50.

4 A corithmes gloutons

Optimalité (preuve)

e Ecrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pieces de
moins de 200 euros (voir TP).

15/

Optimalité (preuve)

e Ecrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pieces de
moins de 200 euros (voir TP).

@ On constate que la plus grande somme possible remboursable
avec ces pieces est

2x24+5+2x20+50+100 =199

151 A corithmes gloutons

Optimalité (preuve)

e Ecrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pieces de
moins de 200 euros (voir TP).

@ On constate que la plus grande somme possible remboursable
avec ces pieces est

2x24+5+2x20+50+100 =199

@ Ainsi, la solution optimale ne pourra JAMAIS rembourser plus
de 199 € avec des piéces de moins de 200 €. Dit autrement,
la solution optimale doit rembourser toute somme S > 200€
avec le maximum possible de pieces de 200€ (qui est en fait
k = 5/200).

151 A corithmes gloutons

Optimalité (preuve)

e Ecrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pieces de
moins de 200 euros (voir TP).

@ On constate que la plus grande somme possible remboursable
avec ces pieces est

2x24+5+2x20+50+100 =199

@ Ainsi, la solution optimale ne pourra JAMAIS rembourser plus
de 199 € avec des piéces de moins de 200 €. Dit autrement,
la solution optimale doit rembourser toute somme S > 200€
avec le maximum possible de pieces de 200€ (qui est en fait
k = 5/200).

@ Or, notre algorithme calcule exactement k.

151 A corithmes gloutons

Optimalité (preuve)

@ Pour une somme inférieure a 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pieces de moins de 100 euros.

161 A corithmes gloutons

Optimalité (preuve)

@ Pour une somme inférieure a 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pieces de moins de 100 euros.

@ On trouve alors que la solution optimale ne peut rembourser
qu'une somme de 99 euros avec ces pieces. Pour rembourser
une somme entre entre 100 et 199€, il faut un billet de 100.

161 A corithmes gloutons

Optimalité (preuve)

@ Pour une somme inférieure a 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pieces de moins de 100 euros.

@ On trouve alors que la solution optimale ne peut rembourser
qu'une somme de 99 euros avec ces pieces. Pour rembourser
une somme entre entre 100 et 199€, il faut un billet de 100.

@ C'est exactement la quantité que trouve notre programme
dans ce cas la!

161 A corithmes gloutons

Optimalité (preuve)

@ Pour une somme inférieure a 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pieces de moins de 100 euros.

@ On trouve alors que la solution optimale ne peut rembourser
qu'une somme de 99 euros avec ces pieces. Pour rembourser
une somme entre entre 100 et 199€, il faut un billet de 100.

@ C'est exactement la quantité que trouve notre programme
dans ce cas la!

@ etc.

161 A corithmes gloutons

	Généralités
	Exemple du rendu de monnaie

