
Généralités
Exemple du rendu de monnaie

Algorithmes gloutons

Lycée Thiers

1/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

1 Généralités

2 Exemple du rendu de monnaie

2/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

1 Généralités

2 Exemple du rendu de monnaie

3/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d’obtenir un résultat optimum
global (Wikipedia).

Exemples classiques :

Rendu de monnaie ;
Coloration des sommets d’un graphe ;
Algorithme de Dijkstra pour la recherche de PCC ;

Un algorithme glouton fournit le plus souvent une solution au
problème. Dans les cas où il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

4/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d’obtenir un résultat optimum
global (Wikipedia).

Exemples classiques :

Rendu de monnaie ;
Coloration des sommets d’un graphe ;
Algorithme de Dijkstra pour la recherche de PCC ;

Un algorithme glouton fournit le plus souvent une solution au
problème. Dans les cas où il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

4/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d’obtenir un résultat optimum
global (Wikipedia).

Exemples classiques :

Rendu de monnaie ;

Coloration des sommets d’un graphe ;
Algorithme de Dijkstra pour la recherche de PCC ;

Un algorithme glouton fournit le plus souvent une solution au
problème. Dans les cas où il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

4/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d’obtenir un résultat optimum
global (Wikipedia).

Exemples classiques :

Rendu de monnaie ;
Coloration des sommets d’un graphe ;

Algorithme de Dijkstra pour la recherche de PCC ;

Un algorithme glouton fournit le plus souvent une solution au
problème. Dans les cas où il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

4/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d’obtenir un résultat optimum
global (Wikipedia).

Exemples classiques :

Rendu de monnaie ;
Coloration des sommets d’un graphe ;
Algorithme de Dijkstra pour la recherche de PCC ;

Un algorithme glouton fournit le plus souvent une solution au
problème. Dans les cas où il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

4/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Un algorithme glouton (greedy algorithm en anglais, parfois
appelé aussi algorithme gourmand, ou goulu) est un
algorithme qui suit le principe de réaliser, étape par étape, un
choix optimum local, afin d’obtenir un résultat optimum
global (Wikipedia).

Exemples classiques :

Rendu de monnaie ;
Coloration des sommets d’un graphe ;
Algorithme de Dijkstra pour la recherche de PCC ;

Un algorithme glouton fournit le plus souvent une solution au
problème. Dans les cas où il ne donne pas systématiquement
la solution optimale, il est appelé une heuristique gloutonne.

4/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Exemple d’heuristique gloutonne

Un algorithme glouton peut retourner une solution
sous-optimale : en partant du point A et en cherchant à
monter selon la plus forte pente, un algorithme glouton
trouvera le maximum local m, mais pas le maximum global M.

Il faut bien comprendre que même si elle ne fournit pas
toujours de solution optimale, une stratégie gloutonne est
souvent adoptée en raison de la simplicité de sa mise en
œuvre.

5/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Exemple d’heuristique gloutonne

Un algorithme glouton peut retourner une solution
sous-optimale : en partant du point A et en cherchant à
monter selon la plus forte pente, un algorithme glouton
trouvera le maximum local m, mais pas le maximum global M.

Il faut bien comprendre que même si elle ne fournit pas
toujours de solution optimale, une stratégie gloutonne est
souvent adoptée en raison de la simplicité de sa mise en
œuvre.

5/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

1 Généralités

2 Exemple du rendu de monnaie

6/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Soit un ensemble C (pour � coins �) de n valeurs entières de
billets et pièces de monnaies v1 < v2 < · · · < vn. Par exemple
C = {1e,2e,5e,10e,20e,100e,200e}

Le problème du rendu de monnaie consiste à déterminer le
nombre minimal de billets et de pièces pour rendre une somme
donnée.

Par exemple, la somme de 49e peut être rendue en utilisant
49 pièces de 1e, ou 2 billets de 20e, un billet de 5e et deux
pièces de 2e.

Donc 5 billets/pièces rendues VS 49. Ce nombre 5 est
d’ailleurs le plus petit qu’on puisse trouver pour le système de
pièces C .

7/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Soit un ensemble C (pour � coins �) de n valeurs entières de
billets et pièces de monnaies v1 < v2 < · · · < vn. Par exemple
C = {1e,2e,5e,10e,20e,100e,200e}
Le problème du rendu de monnaie consiste à déterminer le
nombre minimal de billets et de pièces pour rendre une somme
donnée.

Par exemple, la somme de 49e peut être rendue en utilisant
49 pièces de 1e, ou 2 billets de 20e, un billet de 5e et deux
pièces de 2e.

Donc 5 billets/pièces rendues VS 49. Ce nombre 5 est
d’ailleurs le plus petit qu’on puisse trouver pour le système de
pièces C .

7/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Soit un ensemble C (pour � coins �) de n valeurs entières de
billets et pièces de monnaies v1 < v2 < · · · < vn. Par exemple
C = {1e,2e,5e,10e,20e,100e,200e}
Le problème du rendu de monnaie consiste à déterminer le
nombre minimal de billets et de pièces pour rendre une somme
donnée.

Par exemple, la somme de 49e peut être rendue en utilisant
49 pièces de 1e, ou 2 billets de 20e, un billet de 5e et deux
pièces de 2e.

Donc 5 billets/pièces rendues VS 49. Ce nombre 5 est
d’ailleurs le plus petit qu’on puisse trouver pour le système de
pièces C .

7/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Présentation

Soit un ensemble C (pour � coins �) de n valeurs entières de
billets et pièces de monnaies v1 < v2 < · · · < vn. Par exemple
C = {1e,2e,5e,10e,20e,100e,200e}
Le problème du rendu de monnaie consiste à déterminer le
nombre minimal de billets et de pièces pour rendre une somme
donnée.

Par exemple, la somme de 49e peut être rendue en utilisant
49 pièces de 1e, ou 2 billets de 20e, un billet de 5e et deux
pièces de 2e.

Donc 5 billets/pièces rendues VS 49. Ce nombre 5 est
d’ailleurs le plus petit qu’on puisse trouver pour le système de
pièces C .

7/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Précisions

Pour raison de concision, nous emploierons dans toute la suite
le terme � pièce � au lieu de � pièce ou billet �.

De plus nous supposons que le stock de chaque valeur de pièce
est illimité, ce qui ne reflète que partiellement la réalité (dans
un DAB, il y a un nombre fini de billets de 10,20,50 et 100e).

La solution calculée par l’algorithme que nous présentons et
donc une solution théorique qui ne tient pas compte de la
réalité du stock.

8/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Précisions

Pour raison de concision, nous emploierons dans toute la suite
le terme � pièce � au lieu de � pièce ou billet �.

De plus nous supposons que le stock de chaque valeur de pièce
est illimité, ce qui ne reflète que partiellement la réalité (dans
un DAB, il y a un nombre fini de billets de 10,20,50 et 100e).

La solution calculée par l’algorithme que nous présentons et
donc une solution théorique qui ne tient pas compte de la
réalité du stock.

8/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Précisions

Pour raison de concision, nous emploierons dans toute la suite
le terme � pièce � au lieu de � pièce ou billet �.

De plus nous supposons que le stock de chaque valeur de pièce
est illimité, ce qui ne reflète que partiellement la réalité (dans
un DAB, il y a un nombre fini de billets de 10,20,50 et 100e).

La solution calculée par l’algorithme que nous présentons et
donc une solution théorique qui ne tient pas compte de la
réalité du stock.

8/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Stratégie

On choisit d’abord les pièces qui permettent de rendre la plus
grande valeur possible sur la somme à rendre. Dans l’exemple
des 49e, il s’agit de deux billets de 20e.

Il reste alors à rendre 9e. On choisit la plus grande valeur de
pièce plus petite que 9, soit 5e. On rend donc un billet de 5
(et pas 2 car 2× 5 > 9).

Enfin la plus grande valeur de pièce plus petite que les 4e à
rendre est 2e. On peut en rendre deux, ce qui ramène la
somme à rendre à 0e. On s’arrête donc là.

9/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Stratégie

On choisit d’abord les pièces qui permettent de rendre la plus
grande valeur possible sur la somme à rendre. Dans l’exemple
des 49e, il s’agit de deux billets de 20e.

Il reste alors à rendre 9e. On choisit la plus grande valeur de
pièce plus petite que 9, soit 5e. On rend donc un billet de 5
(et pas 2 car 2× 5 > 9).

Enfin la plus grande valeur de pièce plus petite que les 4e à
rendre est 2e. On peut en rendre deux, ce qui ramène la
somme à rendre à 0e. On s’arrête donc là.

9/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Stratégie

On choisit d’abord les pièces qui permettent de rendre la plus
grande valeur possible sur la somme à rendre. Dans l’exemple
des 49e, il s’agit de deux billets de 20e.

Il reste alors à rendre 9e. On choisit la plus grande valeur de
pièce plus petite que 9, soit 5e. On rend donc un billet de 5
(et pas 2 car 2× 5 > 9).

Enfin la plus grande valeur de pièce plus petite que les 4e à
rendre est 2e. On peut en rendre deux, ce qui ramène la
somme à rendre à 0e. On s’arrête donc là.

9/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Code (version impérative)� �
1 def greedy_change(coins , v):

2 #coins : tab des valeurs de pi èces par ordre croissant

3 n = len(coins)

4 # le tableau de la somme rendu :

5 # exemple 0 pi èce de 1, 3 de 2, 1 de 5 etc :

6 change = [0] * n

7 cur = v # somme restant à rembourser

8 i = n-1 # indice de valeur de pi èce courante

9 while cur > 0:

10 c = coins[i]

11 if cur < c:

12 i-=1 # changer de valeur de pi èce

13 else:

14 change[i]+=1

15 cur = cur -c

16 return change� �
10/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.
v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.

v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.
v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.
v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.
v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.
v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Paramètres et variables

Paramètres :

coins : tableau des valeurs de pièces.
v : valeur à rembouser

Variables locales :

i : numéro de valeur courante de pièce ;

change[i] : nb de pièces de la valeur courante ;

cur : somme restant à rendre.

11/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Correction du programme

Un variant de boucle est cur + i . Terminaison OK.

La condition coins[0]==1 assure la correction (principe :
apcr, on peut rendre autant de pièces de 1e que la somme
restante).

Le fait que coins[0]==1 , assure aussi que i reste positif

et donc l’accès valide au tableau coins .

12/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Correction du programme

Un variant de boucle est cur + i . Terminaison OK.

La condition coins[0]==1 assure la correction (principe :
apcr, on peut rendre autant de pièces de 1e que la somme
restante).

Le fait que coins[0]==1 , assure aussi que i reste positif

et donc l’accès valide au tableau coins .

12/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Correction du programme

Un variant de boucle est cur + i . Terminaison OK.

La condition coins[0]==1 assure la correction (principe :
apcr, on peut rendre autant de pièces de 1e que la somme
restante).

Le fait que coins[0]==1 , assure aussi que i reste positif

et donc l’accès valide au tableau coins .

12/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité

Proposition

Si coins décrit le système monétaire de la zone euro, alors le
programme greedy change cacule un rendu de monnaie avec le
nombre minimal d’éléments.

Remarque

Un système de pièces qui, tel celui de la zone euro, permet un
rendu optimal est qualifié de canonique.

13/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Certaines combinaison de pièces ne peuvent se trouver dans une
solution optimale :

contrainte 1 Une pièce de valeur val = 1,5,10,50 ou 100 n’est
jamais utilisé deux fois dans une solution optimale.
En effet, pour chacune de ces valeurs il est plus
avantageux de rendre une pièce de valeur 2val plutôt
que deux de valeur val.

contrainte 2 Une pièce de valeur 2 ou 20 n’est jamais utilisée 3
fois dans une solution optimale.

contrainte 3 Une pièce de valeur 1 n’accompagne jamais deux
pièces de valeur 2 : on pourrait remplacer l’ensemble
par une pièce de 5. Une pièce de valeur 10
n’accompagne jamais deux pièces de valeur 20 : on
pourrait remplacer l’ensemble par une pièce de 50.

14/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Certaines combinaison de pièces ne peuvent se trouver dans une
solution optimale :

contrainte 1 Une pièce de valeur val = 1,5,10,50 ou 100 n’est
jamais utilisé deux fois dans une solution optimale.

contrainte 2 Une pièce de valeur 2 ou 20 n’est jamais utilisée 3
fois dans une solution optimale. En effet 3 pièces de
valeur 2 sont avantageusement remplacée par par
une pièce de valeur 1 et une de 5 ; 3 pièces de valeur
20 sont remplacées par une 10 et une de 50.

contrainte 3 Une pièce de valeur 1 n’accompagne jamais deux
pièces de valeur 2 : on pourrait remplacer l’ensemble
par une pièce de 5. Une pièce de valeur 10
n’accompagne jamais deux pièces de valeur 20 : on
pourrait remplacer l’ensemble par une pièce de 50.

14/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Certaines combinaison de pièces ne peuvent se trouver dans une
solution optimale :

contrainte 1 Une pièce de valeur val = 1,5,10,50 ou 100 n’est
jamais utilisé deux fois dans une solution optimale.

contrainte 2 Une pièce de valeur 2 ou 20 n’est jamais utilisée 3
fois dans une solution optimale.

contrainte 3 Une pièce de valeur 1 n’accompagne jamais deux
pièces de valeur 2 : on pourrait remplacer l’ensemble
par une pièce de 5. Une pièce de valeur 10
n’accompagne jamais deux pièces de valeur 20 : on
pourrait remplacer l’ensemble par une pièce de 50.

14/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Écrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pièces de
moins de 200 euros (voir TP).

On constate que la plus grande somme possible remboursable
avec ces pièces est

2× 2 + 5 + 2× 20 + 50 + 100 = 199

Ainsi, la solution optimale ne pourra JAMAIS rembourser plus
de 199 e avec des pièces de moins de 200 e. Dit autrement,
la solution optimale doit rembourser toute somme S > 200e
avec le maximum possible de pièces de 200e (qui est en fait
k = S/200).

Or, notre algorithme calcule exactement k .

15/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Écrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pièces de
moins de 200 euros (voir TP).

On constate que la plus grande somme possible remboursable
avec ces pièces est

2× 2 + 5 + 2× 20 + 50 + 100 = 199

Ainsi, la solution optimale ne pourra JAMAIS rembourser plus
de 199 e avec des pièces de moins de 200 e. Dit autrement,
la solution optimale doit rembourser toute somme S > 200e
avec le maximum possible de pièces de 200e (qui est en fait
k = S/200).

Or, notre algorithme calcule exactement k .

15/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Écrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pièces de
moins de 200 euros (voir TP).

On constate que la plus grande somme possible remboursable
avec ces pièces est

2× 2 + 5 + 2× 20 + 50 + 100 = 199

Ainsi, la solution optimale ne pourra JAMAIS rembourser plus
de 199 e avec des pièces de moins de 200 e. Dit autrement,
la solution optimale doit rembourser toute somme S > 200e
avec le maximum possible de pièces de 200e (qui est en fait
k = S/200).

Or, notre algorithme calcule exactement k .

15/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Écrivons un petit programme qui prend en compte les
contraintes précédentes et faisons le tourner pour explorer
exhaustivement toutes les combinaisons possibles de pièces de
moins de 200 euros (voir TP).

On constate que la plus grande somme possible remboursable
avec ces pièces est

2× 2 + 5 + 2× 20 + 50 + 100 = 199

Ainsi, la solution optimale ne pourra JAMAIS rembourser plus
de 199 e avec des pièces de moins de 200 e. Dit autrement,
la solution optimale doit rembourser toute somme S > 200e
avec le maximum possible de pièces de 200e (qui est en fait
k = S/200).

Or, notre algorithme calcule exactement k .

15/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Pour une somme inférieure à 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pièces de moins de 100 euros.

On trouve alors que la solution optimale ne peut rembourser
qu’une somme de 99 euros avec ces pièces. Pour rembourser
une somme entre entre 100 et 199e, il faut un billet de 100.

C’est exactement la quantité que trouve notre programme
dans ce cas là !

etc.

16/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Pour une somme inférieure à 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pièces de moins de 100 euros.

On trouve alors que la solution optimale ne peut rembourser
qu’une somme de 99 euros avec ces pièces. Pour rembourser
une somme entre entre 100 et 199e, il faut un billet de 100.

C’est exactement la quantité que trouve notre programme
dans ce cas là !

etc.

16/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Pour une somme inférieure à 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pièces de moins de 100 euros.

On trouve alors que la solution optimale ne peut rembourser
qu’une somme de 99 euros avec ces pièces. Pour rembourser
une somme entre entre 100 et 199e, il faut un billet de 100.

C’est exactement la quantité que trouve notre programme
dans ce cas là !

etc.

16/16 Algorithmes gloutons



Généralités
Exemple du rendu de monnaie

Optimalité (preuve)

Pour une somme inférieure à 199 euros reprenons notre petit
programme et faison le tourner pour trouver le nombre
maximum de pièces de moins de 100 euros.

On trouve alors que la solution optimale ne peut rembourser
qu’une somme de 99 euros avec ces pièces. Pour rembourser
une somme entre entre 100 et 199e, il faut un billet de 100.

C’est exactement la quantité que trouve notre programme
dans ce cas là !

etc.

16/16 Algorithmes gloutons


	Généralités
	Exemple du rendu de monnaie

