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Présentation

Introduction

Objectif : représenter une partie des nombre rationnels : des nombres avec
une quantité bornée de chiffres après la virgule.

Idée : on se donne tous les chiffres composants le nombre plus la
position de la virgule. Dans cet esprit (1234, 2) représente 12,34, c’est
à dire 1.234 · 101.

Moyen : tous les nombres réels non nuls peuvent de manière unique
s’écrire sous la forme (−1)s(1 + m)2e dans laquelle

s ∈ {0, 1} est le signe du nombre
m ∈ [0, 1[ est sa mantisse
e ∈ Z est son exposant
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à dire 1.234 · 101.

Moyen : tous les nombres réels non nuls peuvent de manière unique
s’écrire sous la forme (−1)s(1 + m)2e dans laquelle

s ∈ {0, 1} est le signe du nombre

m ∈ [0, 1[ est sa mantisse
e ∈ Z est son exposant

5/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 5 / 50



Présentation

Introduction

Objectif : représenter une partie des nombre rationnels : des nombres avec
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Présentation

Introduction

Moyen : tous les nombres réels non nuls peuvent de manière unique
s’écrire sous la forme (−1)s(1 + m)2e dans laquelle s ∈ {0, 1} est le
signe du nombre, m ∈ [0, 1[ est sa mantisse, e ∈ Z est son exposant.

L’exposant du nombre représente la position de la virgule dans son
expression en base 2.

1 + m est un nombre entre 1 et 2 (exclu). Il s’écrit sous la forme
1.c1 . . . ci . . . avec les ci ∈ {0, 1}. Comme les ordinateurs ne gère que
des quantités finies, le nombre de chiffres binaires ci est borné (en fait
il est fixe, le plus souvent égal à 23 ou 52).
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6/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 6 / 50



Présentation

Pourquoi les nombres à virgule flottante ?

L’avantage de la représentation en virgule flottante par rapport à la
virgule fixe est que la virgule flottante est capable, à nombre de
chiffres égal, de gérer un intervalle de nombres réels plus important.

Considérons une représentation en virgule fixe qui a 5 chiffres dont un
après la virgule. Elle peut exprimer 105 nombres décimaux dans
[0; 9999.9]. Avec 5 fois le chiffre 1, on ne représente que 1111.1.

Avec une représentation en virgule flottante et 5 chiffres 1 : 6 fois
plus d’expressions en virgule flottante qu’en virgule fixe. De plus
l’intervalle de représentation est plus grand : [0; 99999].

Cependant, il faut alors coder la position de la virgule. Cela demande
donc un peu plus de place.
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4 Problèmes induits par la norme

5 Arithmétique psychédélique
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La norme IEEE754

IEEE754, présentation

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
754-1985) (standard IEEE pour l’arithmétique binaire en virgule
flottante) : IEEE 754.

Standard le plus employé actuellement pour le calcul des nombres à
virgule flottante dans le domaine informatique, avec les CPU et les
FPU.

Le standard définit les formats de représentation des nombres à
virgule flottante (signe, mantisse, exposant, nombres dénormalisés) et
valeurs spéciales (infinis et NaN), en même temps qu’un ensemble
d’opérations sur les nombres flottants.

Il décrit aussi quatre modes d’arrondi et cinq exceptions (comprenant
les conditions dans lesquelles une exception se produit, et ce qui se
passe dans ce cas).
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La norme IEEE754

IEEE754, présentation (1)

Les quatre modes d’arrondi :

1 Vers moins l’infini (ex : l’arrondi de la partie entière, b−3.4c = −4).
2 Vers plus l’infini (ex : l’arrondi à l’unité de −3.4 est −3)
3 Vers zéro (−3.4 arrondi en -3, 3.4 arrondi en 3).
4 Au plus proche (avec le cas particulier de l’équidistance : le nb 1.5

doit-il être arrondi à l’unité à 1 ou 2 ? ).

La version 1985 de la norme IEEE 754 définit 4 formats pour
représenter des nombres à virgule flottante :

1 simple précision (32 bits : 1 bit de signe, 8 bits d’exposant (-126 à
127), 23 bits de mantisse, avec bit 1 implicite),

2 simple précision étendue (≥ 43 bits, obsolète, implémenté en pratique
par la double précision),

3 double précision (64 bits : 1 bit de signe, 11 bits d’exposant (-1022 à
1023), 52 bits de mantisse, avec bit 1 implicite),

4 double précision étendue (≥ 79 bits)
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1 simple précision (32 bits : 1 bit de signe, 8 bits d’exposant (-126 à
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La norme IEEE754

Bit 1, bit implicite
Explication

la mantisse représente un nombre décimal entre 1 et 2 (exclu), par exemple
1.1101100011. Rendre le bit 1 implicite consiste à écrire 1101100011, la
partie � 1. � étant sous-entendue puisque toujours la même.
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La norme IEEE754

Représentation binaire des nombres flottants à précision
simple

Figure – IEEE-754 simple précision

Plus généralement, les nombres sont écrits au format (1,E ,M) donc sur

1 + E + M bits :
Signe Exposant décalé Mantisse

(1 bit) (E bits) (M bits)
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La norme IEEE754

Représentation binaire des nombres flottants à précision
simple

Ce format (1,8,23) obsolète est privilégié ici parce qu’on peut faire tenir 32
bits sur un tansparent.

bit de poids fort à 1 : négatif, à 0 : positif.

Exposant : pas de représentation en complément à 2 (car comparer
des nombres serait difficile). L’exposant est décalé, afin de le stocker
sous forme d’un nombre non signé.
En notant E le nombre de chiffres (toujours le même nombre) de
l’exposant, on ajoute un décalage (ou biais) de d = 2E−1 − 1.

Avec E = 8, d = 127. L’exposant est dans l’intervalle [−127; 128],
donc l’exposant décalé est dans [0, 255] ; 0 et 255 ayant une
signification spéciale.
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La norme IEEE754

Représentation binaire des nombres flottants à précision
simple

Ils sont longs de 4 octets (32 bits) : (1,8,23)

La mantisse complète, le significande, doit être considérée comme une
valeur sur 24 bits. Si la mantisse avec bit 1 implicite est 101000 . . .
alors le significande en base 2 est 1.101000 . . . .

La quantité de nombres représentables au format (1,E ,M) est grande
mais finie. L’ordinateur travaille donc avec des valeurs en général
approchées :
Par exemple avec float x = 0.1 ;, l’ordinateur travaille en interne avec
0 01111011 100110011001100110011012 c’est à dire
0.10000000149011610 qui est égal à 13421773

134217728 .
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0.10000000149011610 qui est égal à 13421773
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0.10000000149011610 qui est égal à 13421773
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La norme IEEE754

Affichage

Quand on entre un nombre au clavier, l’ordinateur en calcule une
représentation en virgule flottante. Du fait des arrondis, une infinité
de nombres peuvent avoir la même représentation comme flottant.

La relation � a la même représentation que � est une relation
d’équivalence.

Pour le confort de lecture, l’ordinateur affiche l’unique représentant de
cette classe d’équivalence qui nécessite le moins de chiffres décimaux.

C’est la raison pour laquelle l’ordinateur affiche 0.1 et non le nombre
rationnel avec laquel il travaille effectivement.

Un nombre qui est égal à sa représentation en flottant est dit
représentable exactement en machine. 0.1 n’est pas représentable
exactement en machine ; 1.0 et 3.75 oui.
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La norme IEEE754

À propos de l’exposant

Format (1,E ,M)

En fonction de la valeur ed du champ exposant décalé (0, 255, ou
autre), certains nombres peuvent avoir une signification spéciale. Ils
peuvent être : Des nombres dénormalisés (ed = 0) ; Zéro (ed = 0) ;
Infini (ed = 2N−1 − 1) ; NaN (Not a Number (ed = 2N−1 − 1) � pas
un nombre �, comme 0/0 ou

√
−1).

L’exposant décalé est dans J0, 2E − 1K, le décalage est 2E−1 − 1. Les
nombres � normalisés � ont un exposant décalé dans J1, 2E − 2K.

Le bit implicite de la mantisse est déterminé par la valeur de
l’exposant décalé. Il vaut 0 si l’exposant décalé est égal à 0 et 1 sinon.
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Le bit implicite de la mantisse est déterminé par la valeur de
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La norme IEEE754

À propos de l’exposant
Nombres normalisés et dé-normalisés

Soit le format (1,E ,M)

Si l’exposant décalé est différent de 0 et de 2E − 1, le bit implicite est
1, et le nombre est dit normalisé : (−1)s(1 + m)2e avec m ∈ [0; 1[.

Si l’exposant décalé est nul et la mantisse non nulle, par convention,
le bit implicite vaut 0. Le nombre est dit dé-normalisé. La
représentation au format dé-normalisé est destinée aux très petites
quantités en valeur absolue.

La quantité de nombres à virgules flottante sur une machine et
grande mais finie. Chaque nombre positif (sauf le plus grand) a un
successeur et un prédecesseur (s’il n’est pas nul) positif.

Le successeur du nombre dé-normalisé positif le plus grand est le plus
petit nombre normalisé positif.

Zéro : ni normalisé ni dé-normalisé. Deux écritures : +0 et −0.
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Soit le format (1,E ,M)
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La norme IEEE754

Nombres dé-normalisés

Pour un format 1,E ,M :

Mantisse non nulle, champ exposant décalé : E bits à zéro.

Tous les nombres dé-normalisés ont le même exposant

Si la règle était la même que pour les nombres normalisés, l’exposant
serait donc de 0− decalage soit −2E−1 + 1, donc −1023 pour les
flottants double précision.

Mais, par convention, l’exposant pour les nombres dé-normalisés est
en fait égal au plus petit exposant de nombre normalisé soit
−2E−1 + 1 + 1. Ce qui change, c’est le bit implicite 0 (dé-normalisé)
ou 1 (normalisé) :

Plus petit normalisé positif (1 + m)2−2E−1+1+1 avec m = 0

Plus petit dé-normalisé positif (0 + m)2−2E−1+1+1 avec m non nul
minimum. Ainsi, m s’écrit avec M − 1 bits à 0 suivis de 1 donc
m = 2−M . Conclusion 2−M2−2E−1+1+1.
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La norme IEEE754

Exposant pour un format (1,E ,M)

Tableau récapitulatif :
Type Exposant décalé Mantisse

Zéros : ±0 0 0

Nombres dénormalisés 0 6= 0, 0. implicite

Nombres normalisés 1 à 2E − 2 quelconque, 1. implicite

Infinis ±∞ 2E − 1 0

NaN (Not a Number) 2E − 1 différente de 0

Exemple (Exposant e d’un nombre normalisé)

Si E = 8, alors e ∈ [−126; 127]. L’exposant -127 (qui est décalé vers la
valeur 0) est réservé pour zéro et les nombres dénormalisés, tandis que
l’exposant 128 (décalé vers 255) est réservé pour coder les infinis et les
NaN.
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La norme IEEE754

Real 2 float
Calcul du triplet (s, e,m)

Cas des nombres normalisés. On calcule (s, e,m) en base 10

Ecriture de 0 : 32 bits à 0 ou 1 suivi de 31 bits nuls.

Ecriture sous forme scientifique au standard décimal : Si X 6= 0,
X = (−1)s .2e .(1 + m) avec

s ∈ {0, 1}
e ∈ Z
m ∈ [0, 1[

Il faudra exprimer ces nombres au format binaire au moyen d’un
triplet (s2, e2,m2).
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La norme IEEE754

Real 2 float
Calcul du triplet (s, e,m)

Recherche de s : 0 si X est positif ou nul, 1 sinon.

Recherche de e :

si |X | ≥ 2, diviser par 2 la valeur absolue de X autant de fois que
nécessaire jusqu’à obtenir un entier de l’intervalle [1 ;2[. e est le
nombre de divisions effectuées.
si |X | < 1, multiplier par 2 la valeur absolue de X par 2 autant de fois
que nécessaire jusqu’à obtenir un entier de l’intervalle [1 ;2[. e est
l’opposé du nombre de multiplications.
si 2 > |X | ≥ 1 alors e = 0.

Recherche de m : Si on connait X , s et e alors il est facile de
trouver m :

m =
(−1)s

2e
X − 1.
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que nécessaire jusqu’à obtenir un entier de l’intervalle [1 ;2[. e est
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l’opposé du nombre de multiplications.
si 2 > |X | ≥ 1 alors e = 0.

Recherche de m : Si on connait X , s et e alors il est facile de
trouver m :

m =
(−1)s

2e
X − 1.

21/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 21 / 50



La norme IEEE754

Real 2 float
Triplet (s2, e2,m2) en base 2

Exemple : X = −9.6 ; s10 = 1 ; 9.6× 2−3 = 1.2 ∈ [1; 2[ donc e10 = 3 ;
m10 = 1.2− 1.

Connaissant s, e,m de la notation scientifique décimale, on veut
s2, e2,m2 tels que

bit de signe s2 = s10,
bits d’exposant e2 = bin(e + 127) (conversion de l’exposant décalé en
base 2),
Pour la mantisse sur 23 bits

I Multiplier m10 par 2,
II Calculer partie entière (0 ou 1) ; partie décimale.

III partie entière : un nouveau bit de la représentation.

Recommencer à I avec la partie décimale du résultat jusqu’à avoir 23
bits de mantisse (et même un peu plus pour arrondir)
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bits de mantisse (et même un peu plus pour arrondir)

22/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 22 / 50



La norme IEEE754

Real 2 float
Triplet (s2, e2,m2) en base 2

Exemple : X = −9.6 ; s10 = 1 ; 9.6× 2−3 = 1.2 ∈ [1; 2[ donc e10 = 3 ;
m10 = 1.2− 1.

Connaissant s, e,m de la notation scientifique décimale, on veut
s2, e2,m2 tels que

bit de signe s2 = s10,
bits d’exposant e2 = bin(e + 127) (conversion de l’exposant décalé en
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Recommencer à I avec la partie décimale du résultat jusqu’à avoir 23
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bits de mantisse (et même un peu plus pour arrondir)

22/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 22 / 50



La norme IEEE754

Real 2 float
Triplet (s2, e2,m2) en base 2

Exemple : X = −9.6 ; s10 = 1 ; 9.6× 2−3 = 1.2 ∈ [1; 2[ donc e10 = 3 ;
m10 = 1.2− 1.

Connaissant s, e,m de la notation scientifique décimale, on veut
s2, e2,m2 tels que

bit de signe s2 = s10,
bits d’exposant e2 = bin(e + 127) (conversion de l’exposant décalé en
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La norme IEEE754

Real 2 float
Exemple

X = −9.6, s10 = 1, e10 = 3, m10 = 0.2.

e10 + 12710 = 13010, en base 2 : e2 = 100000102

Pour la mantisse :

1 0.2× 2 = 0.4 = 0 + 0.4
2 0.4× 2 = 0.8 = 0 + 0.8
3 0.8× 2 = 1.6 = 1 + 0.6
4 0.6× 2 = 1.2 = 1 + 0.2. On est revenu à 0.2 : séquence infinie.

Mantisse : 0011 0011 0011 0011 0011 0011 0011. . . .
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Mantisse : 0011 0011 0011 0011 0011 0011 0011. . . .

23/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 23 / 50



La norme IEEE754

Real 2 float
Exemple

2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

0 0 1 1 0 0 1 1 0 0

2−11 2−12 2−13 2−14 2−15 2−16 2−17 2−18 2−19 2−20

1 1 0 0 1 1 0 0 1 1

2−21 2−22 2−23 2−24 2−25 2−26 2−27 . . .
0 0 1 1 0 0 1 . . .

On a donc la mantisse comme une somme infinie de coefficients
+∞∑
i=1

ai
2i

mais on veut une somme finie.

Question : 1
224 + 0× 1

225 + 0× 1
226 + 1× 1

227 est-il plus proche de
1

223

ou de 0 ? Donc m est-il plus proche de
23∑
i=1

ai
2i

ou de(
23∑
i=1

ai
2i

)
+

1

224
+

1

227
?
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La norme IEEE754

Real 2 float
Exemple

1

224
+ 0 · 1

225
+ 0 · 1

226
+ 1 · 1

227
est plus proche de

1

223
: on ajoute donc

1 au bit de poids faible (le 23ème) et on tient compte des retenues.
Attention : Dans le pire cas (mais pas ici), m =

∑23
i=1

1
2i

et on ajoute

1
223 . Alors m + 1

223 =
1
2 −

1
224

1− 1 1
2

+ 1
223 = 1 donc 1 + m = 2 et il faut

changer l’exposant ! !

Arrondi au plus proche sur 23 bits :

M = 0011 0011 0011 0011 0011 010

Finalement : −9.610 est représenté par

12 100000102 0011 0011 0011 0011 0011 0102
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La norme IEEE754

Real 2 float : arrondi si M = 23

Dans l’exemple étudié X = −9.6, on pousse le calcul des décimales
jusqu’au 27ème bit et on peut déterminer sans erreur quel est
l’arrondi au plus proche de la matrice.

Les bits 24,25,26 s’écrivent en effet 100 et leur connaissance seule ne
permet pas de trancher la question : faut-il arrondir par défaut ou par
excès (exactement comme arrondir en base 10 le nombre 9.5 à l’unité
au plus proche a 2 réponses).

Dans nos exemples, on ne pousse pas les calculs trop loin après le
dernier bit maintenu (le 23ème ici) et on préfère calculer seulement 3
bits supplémentaires. Le cas où ces 3 bits s’écrivent 100 est géré par
la règle dite de l’arrondi au plus proche pair (cf. plus loin).

Cas dégénéré : On peut aussi arrondir sans utiliser les bits au delà du
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au plus proche a 2 réponses).

Dans nos exemples, on ne pousse pas les calculs trop loin après le
dernier bit maintenu (le 23ème ici) et on préfère calculer seulement 3
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La norme IEEE754

Float 2 real

Soit le flottant 0100 0000 1011 1000 0000 0000 0000 0000. À quel réel
correspond-il ?

Signe Exposant décalé Bit caché + mantisse

0 1000 0001 (1) 011 1000 0000 0000 0000 0000

Le signe est 0, le nombre est donc positif. Le champ exposant décalé
est e2 = 100000012, autrement dit e10 = 129. La valeur réelle de
l’exposant est donc e10 − d = 129− 127 = 2. Le significande (donc
avec le bit implicite) est 1.01110000000000000000002.

Conversion :

(−1)0×22×( 1
implicite

×20 +0×2−1 +1×2−2 +1×2−3 +1×2−4) = 5.75
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est e2 = 100000012, autrement dit e10 = 129. La valeur réelle de
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0 1000 0001 (1) 011 1000 0000 0000 0000 0000

Le signe est 0, le nombre est donc positif. Le champ exposant décalé
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La norme IEEE754

float 2 real

Plus généralement, partant d’un flottant simple précision normalisé :

L’écrire en binaire et retrouver chaque champs.

Signe s : bit de poids fort.

Convertir le binaire du champs exposant en un entier e, lui retrancher
le décalage d = 127 (28−1 − 1).

Partie décimale m (indiquée par la mantisse b1b2 . . . b22b23).

m =
22∑
i=0

bi2
−i = b12−1 + b22−2 + . . . b222−22 + b232−23.

Le nombre réel correspondant est (−1)s( 1
bit implicite

+ m)2e−127.
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La norme IEEE754

Portée

Figure – Quelques nombres positifs (Wikipedia)
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30/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 30 / 50



Exemples et règles d’arrondis

Un exemple d’arrondi au plus proche

Soit un nombre de mantisse 1101100000000 . . . .

Le significande complet avec bit caché est 1.1101100 . . . .

On veut l’arrondir à 3 chiffres après la virgule. On a le choix entre
1.110 ou 1.110 + 0.001 = 1.111.
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Exemples et règles d’arrondis

Un exemple d’arrondi au plus proche

Soit un nombre de mantisse 1101100000000 . . . .

20 +
1

2
+

1

22
+ 0 +

1

24
+

1

25︸ ︷︷ ︸
partie à arrondir

∼ 111011

Arrondi par défaut : 20 +
1

21
+

1

22
+ 0 ∼ 1.110

Arrondi par excès : 20 +
1

21
+

1

22
+

1

23
∼ 1.111.

r = 1
24 + 1

25 est-il plus proche de 0 ou de 1
23 ?

Plus proche de 1
23 .

Réponse : 1.111.
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Réponse : 1.111.

32/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 32 / 50



Exemples et règles d’arrondis

Choix du nombre le plus proche
Cas de l’examen de 3 bits après le dernier maintenu

L’exemple précédent était facile car il y avait une seule réponse
possible.

Mais que se passe-t-il quand on a le choix ? Par exemple, en base 10,
comment arrondir à l’unité 1.500 qui est aussi proche de 1 que de 2 ?
Arrondir au plus proche pair signifie choisir 2 plutôt que 1.

En base deux, le problème se pose lorsque le nombre après le dernier
bit maintenu est 100 (si 3 bits au delà du dernier maintenu).

En base deux, on prend en général l’arrondi au plus proche pair. Il
faut que le dernier chiffre de l’écriture binaire soit pair.

Arrondir au plus proche pair revient, lorsqu’on a le choix, à privilégier
les écritures qui se terminent par 0.
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comment arrondir à l’unité 1.500 qui est aussi proche de 1 que de 2 ?
Arrondir au plus proche pair signifie choisir 2 plutôt que 1.

En base deux, le problème se pose lorsque le nombre après le dernier
bit maintenu est 100 (si 3 bits au delà du dernier maintenu).
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Arrondir au plus proche pair revient, lorsqu’on a le choix, à privilégier
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comment arrondir à l’unité 1.500 qui est aussi proche de 1 que de 2 ?
Arrondir au plus proche pair signifie choisir 2 plutôt que 1.

En base deux, le problème se pose lorsque le nombre après le dernier
bit maintenu est 100 (si 3 bits au delà du dernier maintenu).
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Exemples et règles d’arrondis

Exemples d’arrondis au plus proche pair

Arrondir 1.100100 à 3 chiffres après la virgule : plus proche pair 1.100
(0 est pair).

Arrondir 1.101100 à 3 chiffres après la virgule. 1 est impair. Plus
proche pair : 1.101 + 0.001 = 1.110.

Arrondir 1.111100 à 3 chiffres après la virgule. 1 est impair. Plus
proche pair : 1.111 + 0.001 = 10.000. Il faut changer l’exposant
(ajouter 1 à l’exposant) ! !

Lorsqu’on est dans le cas de figure où il faut changer l’exposant, et
que l’exposant est lui même maximum (254=127+127 pour les
nombres sur 32 bits), on se retrouve avec un nombre considéré
comme infini !
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Exemples et règles d’arrondis

Règle d’arrondi au plus proche pair

Exemple d’arrondi au troisième chiffre après la virgule :

1.01110011 = 1.011︸ ︷︷ ︸
bits maintenus

bits tronqués︷ ︸︸ ︷
10011 .

On considère les trois chiffres après le dernier bit maintenu.

1 0xy : juste tronquer l’expression (x,y sont quelconques).
2 100. Arrondir au plus proche pair :

Si le dernier bit mantenu vaut 0 : ne rien faire.
Sinon, ajouter 1 au dernier bit maintenu en tenant compte des retenus.

3 1xy, avec x + y > 0 : ajouter 1 au dernier bit maintenu.

Dans l’exemple, les trois chiffres après le dernier bit maintenu forment
100 (équidistance). L’arrondi au plus proche pair est
1.011 + 0.001 = 1.100.
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Règle d’arrondi au plus proche pair

Exemple d’arrondi au troisième chiffre après la virgule :

1.01110011 = 1.011︸ ︷︷ ︸
bits maintenus

bits tronqués︷ ︸︸ ︷
10011 .

On considère les trois chiffres après le dernier bit maintenu.

1 0xy : juste tronquer l’expression (x,y sont quelconques).
2 100. Arrondir au plus proche pair :

Si le dernier bit mantenu vaut 0 : ne rien faire.
Sinon, ajouter 1 au dernier bit maintenu en tenant compte des retenus.

3 1xy, avec x + y > 0 : ajouter 1 au dernier bit maintenu.

Dans l’exemple, les trois chiffres après le dernier bit maintenu forment
100 (équidistance). L’arrondi au plus proche pair est
1.011 + 0.001 = 1.100.

35/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 35 / 50
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Problèmes induits par la norme

Expressions infinies

Les nombres flottants représentent des rationnels ayant une expression
finie. Quid des expressions illimitées ?

1
5 = 0.2 admet une expression finie en base 10 (EF10), mais pas 1

3 .

En base 2,
1

a
admet une EF2 si et seulement si a = 2n (n > 0).

1
10 = 0.1 en base 10. Donc

1

10
a une EF10 mais pas une EF2 car

10 = 2× 5 et que 5 est premier avec 2.

Il faut donc arrondir. Le standard IEEE-754 prévoit 5 méthodes.

Règle de l’Arrondi correct : Une fois un mode d’arrondi choisi, le
résultat d’une opération est déterministe : un seul résultat possible.
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Règle de l’Arrondi correct : Une fois un mode d’arrondi choisi, le
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Problèmes induits par la norme

Un exemple d’arrondi
Un dixième

0.1 en base 10, correspond à la séquence suivante : s = 0 = S ,
e = −4 + 127 donc E = 01111011, M est une séquence infinie
1.1001 1001 1001 1001 1001 100 110 0 . . . Alors
1 + m = 1.100110011001100110011012.

Du fait des arrondis, le nombre qui représente 0.1 sur un ordinateur
avec flottants 32 bits est en fait le nombre 13421773

134217728 soit
0.100000001490116.
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Problèmes induits par la norme

Règle de l’arrondi correct

La norme IEEE 754 impose l’arrondi correct pour les 5 opérations de base
et la racine carrée : Un programme les utilisant donne le même résultat sur
toute configuration (machine, système, processeur). Sous réserve :

1 qu’il ’y ait pas de précision intermédiaire étendue (ou alors
désactivée). Ca veut dire que les résultats intermédiaires du calcul
d’une expression ne doivent pas être calculés avec une précision plus
grande que celle attendue pour le résultat.

2 le compilateur ne doit pas changer l’ordre des opérations si cela peut
conduire à un résultat différent.
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grande que celle attendue pour le résultat.

2 le compilateur ne doit pas changer l’ordre des opérations si cela peut
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Problèmes induits par la norme

Problème d’arrondi célèbre
Patriot

En 1991, un anti-missile Patriot rate l’interception d’un missile irakien
Skud, lequel blesse 100 personnes, en tue 28.

Un micro-processeur interne calcule l’heure en multiples de dixièmes
de secondes.

Le nombre de dixièmes de secondes depuis le démarrage est stocké
dans un registre entier puis multiplié par une approx. de 1

10 sur 24 bits
pour obtenir le temps en seconde.

Approximation utilisée : 0.1 ' 209715 · 2−21 = 0.09999990463256836,
erreur d’environ 10−7.

Processeur démarré 100h auparavant. Erreur de 0.34 secondes.

Le système Patriot croit être à un instant t, mais il est en fait
à t − 0.34s.. Il utilise une position du Scud vieille de 0.34s. Pendant
ce temps, le Skud parcourt 500 m.

Le Patriot rate sa cible, pas le Skud.
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Le système Patriot croit être à un instant t, mais il est en fait
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à t − 0.34s.. Il utilise une position du Scud vieille de 0.34s. Pendant
ce temps, le Skud parcourt 500 m.

Le Patriot rate sa cible, pas le Skud.

40/50 Ivan Noyer ( Lycée Thiers ) Nombres flottants 40 / 50



Problèmes induits par la norme

Double arrondi
Cas d’examen de 3 bits après le dernier maintenu

Soit x réel, y l’arrondi en précision p de x .

Soit x ′ arrondi en précision q < p de y .

x ′ n’est pas toujours l’arrondi en précision q de x !

1 x = 1.0110100101. Arrondir à 7 chiffres après la virgule.
2 Après la décimale 7 de x on a : 101. L’arrondi y à 7 chiffres après la

virgule de x est : 1.0110101
3 Après la décimale 4 de y : 101. L’arrondi x ′ à 4 décimales de y est :

1.0111
4 MAIS, après la décimale 4 de x on a 100. suivant la règle de l’arrondi

pair, L’arrondi z à 4 décimales de x est 1.0110.
5 Et on a z 6= x ′ !

On peut montrer que le problème du double arrondi n’intervient que
si on choisit l’arrondi au plus proche pair. Pas de chance : c’est le
mode d’arrondi le plus répandu !
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1.0111

4 MAIS, après la décimale 4 de x on a 100. suivant la règle de l’arrondi
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virgule de x est : 1.0110101

3 Après la décimale 4 de y : 101. L’arrondi x ′ à 4 décimales de y est :
1.0111

4 MAIS, après la décimale 4 de x on a 100. suivant la règle de l’arrondi
pair, L’arrondi z à 4 décimales de x est 1.0110.

5 Et on a z 6= x ′ !

On peut montrer que le problème du double arrondi n’intervient que
si on choisit l’arrondi au plus proche pair. Pas de chance : c’est le
mode d’arrondi le plus répandu !
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Soit x ′ arrondi en précision q < p de y .
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Problèmes induits par la norme

Pourquoi privilégier l’arrondi au plus proche pair ?

La méthode de � l’arrondi bancaire � (autre nom pour l’arrondi au
plus proche pair) est employée pour éliminer le biais qui surviendrait
en arrondissant à chaque fois par excès les nombres dont les trois
derniers chiffres seraient 100.

Transposons en base 10 : Imaginons une multinationale qui reçoit un
milliards de virements exprimés en centimes d’euros (sur une certaine
période) arrondis au dixième de centime sur un de ses comptes en
banque.
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en arrondissant à chaque fois par excès les nombres dont les trois
derniers chiffres seraient 100.

Transposons en base 10 : Imaginons une multinationale qui reçoit un
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Problèmes induits par la norme

Pourquoi privilégier l’arrondi au plus proche pair ?

Supposons que pour un millième de ces virements, la partie
fractionnaire soit de la forme .x500 où x ∈ J0, 9K.

Si la banque arrondi le montant de ces virements au dixième de
centime supérieur (.x + 0.1, puis répercussion de la retenue), la
multinationale gagne 0.05 centime de plus par virement que ce qu’elle
aurait dû toucher.
Au total cela fait 106 × 5× 10−2 = 5× 104 = 50 000 euros que la
multinationale a gagnés au détriment de la banque ! Au centime
inférieur, ce serait la banque qui gagnerait de l’argent.

D’où la nécessité d’arrondir certains montants au centime supérieur et
d’autres au centime inférieur pour équilibrer, comme avec l’arrondi au
plus proche pair.
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Problèmes induits par la norme

Pourquoi privilégier l’arrondi au plus proche pair ?

Supposons que pour un millième de ces virements, la partie
fractionnaire soit de la forme .x500 où x ∈ J0, 9K.
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Problèmes induits par la norme

Cas des exceptions

En cas de problème, la norme impose de signaler des Exceptions

Diviser un nombre différent de 0 par 0 donne ±∞

Diviser zéro par zéro, ou calculer le logarithme d’un nombre négatif
conduisent à générer des NaN qu’on peut décider de considérer
comme des exceptions.

Nombre entier positif plus grand que le plus grand entier
représentable (overflow). Ou plus petit que le plus petit entier
représentable (underflow).
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Diviser un nombre différent de 0 par 0 donne ±∞
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Arithmétique psychédélique

Python

Entrons 0.1 dans l’interpréteur Python :

1 >>> 0 . 1
2 0 . 1

La valeur dans la machine n’est pas exactement 0.1. Python a
simplement arrondi l’affichage du résultat.

Autre illusion :

1 >>> 0 . 2
2 0 . 2
3 >>> 0 . 1 + 0 . 2
4 0.30000000000000004
5 >>> 0.1+0.2==0.3
6 F a l s e
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Arithmétique psychédélique

Python

1 >>> round ( 2 . 6 7 5 , 2)
2 2 . 6 7

On devrait avoir 2.68 (plus proche pair). Mais le flottant correspondant à
2.675 est (53 chiffres en Python) :

2.67499999999999982236431605997495353221893310546875

Donc arrondi à 2.67.
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Arithmétique psychédélique

Python

Pour savoir où on en est dans les arrondis, importer le module
Décimal :

1 >>> from d e c i m a l import Decimal
2 >>> Decimal ( 2 . 6 7 5 )
3 Decimal ( ' 2.674999999999999822364316059974953
4 53221893310546875 ' )

La somme de dix fois le représentant de 0.1, ne vaut pas tout à fait 1 :

1 >>> somme = 0 . 0
2 >>> f o r i i n range ( 0 , 1 0 ) :
3 . . . somme += 0 . 1
4 . . .
5 >>> somme
6 0.9999999999999999

L’addition des flottants n’est pas compatible avec la relation d’ordre...
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Arithmétique psychédélique

Arithmétique flottante En arithmétique flottante :

L’égalité n’est pas réflexive : NaN 6= NaN (hors-programme).

L’addition et la multiplication sont commutatives :

a � b = b � a pour � ∈ {+,×} .

L’addition et la multiplication ne sont pas associatives :

1 >>> 0 . 1 + ( 0 . 2 − 0 . 3 )
2 2.7755575615628914 e−17
3 >>> ( 0 . 1 + 0 . 2 ) − 0 . 3
4 5.551115123125783 e−17
5 >>> ( ( 0 . 1 + 0 . 2 ) − 0 . 3 ) −(0.1+(0.2−0.3) )
6 2.7755575615628914 e−17

La multiplication n’est pas distributive par rapport à l’addition :

1 >>> 0 . 1∗ ( 0 . 2 + 1 ) − ( 0 . 1 ∗ 0 . 2 + 0 . 1∗1 )
2 −1.3877787807814457 e−17
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Arithmétique psychédélique

Epsilon Machine

Définition : La plus petite valeur qui ajoutée à 1 donne un résultat
différent de 1.

La plus petite distance entre 1 et le suivant par la fonction spacing :

Plus le nombre est petit (ie plus son exposant dans la représentation
IEEE754 est petit), plus le plus proche nombre représentable est
proche.

On a des informations sur le plus petit nombre normalisé et le plus
petit dénormalisé. cf epsilon machine.ipynb .
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6 >>> np . s p a c i n g ( 0 . 2 )#plus le nb est petit ,
7 #plus le prochain nb est proche
8 2.7755575615628914 e−17
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