Représentation des nombres

Ivan Noyer

Lycée Leconte de Lisle

B e T

@ Introduction

© Les entiers non signés
o Généralités
@ Changement de base
@ Opérations

© Entiers signés

@ Les entiers en Python

e T

Crédits

@ Informatique pour tous en classes préparatoires
aux grande écoles (Eyrolles)

o Wikipédia : Complément a deux et ce Wiki
@ Nombres flottants : Wikipedia en génréal

e cpprefrence (Fonction de bibliotheques en C)

3/+4 | P N

http://fr.wikipedia.org/wiki/Compl%C3%A9ment_%C3%A0_deux
http://fr.wikibooks.org/w/index.php?title=Architecture_des_ordinateurs/Repr%C3%A9sentation_des_donn%C3%A9es&oldid=360556
http://fr.wikipedia.org/wiki/IEEE_754
https://en.cppreference.com/w/c/numeric/math/nextafter

© Introduction

+/+« | P

Boutisme

@ En informatique, certaines données telles que les nombres
entiers peuvent étre représentées sur plusieurs octets. L'ordre
dans lequel ces octets sont organisés en mémoire ou dans une
communication est appelé endianness (mot anglais traduit par
< boutisme > ou par < endianisme).

5/+4 | N

Boutisme

@ En informatique, certaines données telles que les nombres
entiers peuvent étre représentées sur plusieurs octets. L'ordre
dans lequel ces octets sont organisés en mémoire ou dans une
communication est appelé endianness (mot anglais traduit par
< boutisme > ou par < endianisme).

@ De la méme maniére que certains langages humains s'écrivent
de gauche a droite, et d'autres s'écrivent de droite a gauche, il
existe une alternative majeure a I'organisation des octets
représentant une donnée : I'orientation big-endian et
I'orientation little-endian.

5/+4 | N

Boutisme

@ En informatique, certaines données telles que les nombres
entiers peuvent étre représentées sur plusieurs octets. L'ordre
dans lequel ces octets sont organisés en mémoire ou dans une
communication est appelé endianness (mot anglais traduit par
< boutisme > ou par < endianisme).

@ De la méme maniére que certains langages humains s'écrivent
de gauche a droite, et d'autres s'écrivent de droite a gauche, il
existe une alternative majeure a I'organisation des octets
représentant une donnée : I'orientation big-endian et
I'orientation little-endian.

@ En maths, la convention d'écriture des polyndmes est le
big-endian (ou mot de poids fort en téte) comme dans
X3+ X%+ 1.

/44| N

Gulliver

o Les termes big-endian et little-endian ont été popularisés dans
le domaine informatique par Dany Cohen, en référence aux
< Voyages de Gulliver >, roman satirique de Jonathan Swift.

¥ 000 dvanNoyer | oicion e onbee

Gulliver

o Les termes big-endian et little-endian ont été popularisés dans
le domaine informatique par Dany Cohen, en référence aux
< Voyages de Gulliver >, roman satirique de Jonathan Swift.
@ En 1721, Swift décrit comment de nombreux habitants de
Lilliput refusent d’obéir a un décret obligeant a manger les
ceufs a la coque par le petit bout.

¥ 000 dvanNoyer | oicion e onbee

Gulliver

o Les termes big-endian et little-endian ont été popularisés dans
le domaine informatique par Dany Cohen, en référence aux
< Voyages de Gulliver >, roman satirique de Jonathan Swift.

@ En 1721, Swift décrit comment de nombreux habitants de
Lilliput refusent d’obéir a un décret obligeant a manger les
ceufs a la coque par le petit bout.

@ La répression pousse les rebelles, dont la cause est appelée
big-endian, a se réfugier dans I'empire rival de Blefuscu ce qui
entretient une guerre longue et meurtriéere entre les deux
empires.

FIGURE — un oeuf

6/44 lvan Noyer

Big-endian

@ Soit un entier sur 32 bits a écrire en en mémoire, par exemple
0xAO0B70708 en notation hexadécimal. Pour une structure de
mémoire fondée sur une unité atomique de 1 octet et un
incrément d’'adresse de 1 octet, la convention big-endian
consiste a enregistrer AQ a |'adresse mémoire la plus petite,
B7 a la seconde plus petite et 08 a la plus grande.

7/+« | N O

Big-endian

@ Soit un entier sur 32 bits a écrire en en mémoire, par exemple
0xAO0B70708 en notation hexadécimal. Pour une structure de
mémoire fondée sur une unité atomique de 1 octet et un
incrément d’'adresse de 1 octet, la convention big-endian
consiste a enregistrer AQ a |'adresse mémoire la plus petite,
B7 a la seconde plus petite et 08 a la plus grande.

@ Tous les protocoles TCP/IP communiquent en big-endian9. Il
en va de méme pour le protocole PCI Express. Les processeurs
Motorola 68000, les SPARC (Sun Microsystems) ou encore les

System /370 (IBM) sont des architectures qui respectent cette
regle.

7/+« | N O

Little-endian

e En little-endian (< mot de poids faible en téte), le nombre
0xA0B70708 est enregistré, pour une structure de mémoire
fondée sur une unité atomique de 1 octet et un incrément
d'adresse de 1 octet, avec E8 a I'adresse mémoire la plus
petite, 07 a la seconde plus petite et AQ a la plus grande.

5/+4 | T N

Little-endian

e En little-endian (< mot de poids faible en téte), le nombre
0xA0B70708 est enregistré, pour une structure de mémoire
fondée sur une unité atomique de 1 octet et un incrément
d'adresse de 1 octet, avec E8 a I'adresse mémoire la plus
petite, 07 a la seconde plus petite et AQ a la plus grande.

@ Par exemple, les processeurs x86 ont une architecture
petit-boutiste. Cela avait du sens en 1975 pour des raisons de
rapidité mais ne présente plus aucun intérét en 2017.
L'incovénient du little-endian est la moindre lisibilité du code
machine par le programmeur.

5/+4 | T N

Little-endian

e En little-endian (< mot de poids faible en téte), le nombre
0xA0B70708 est enregistré, pour une structure de mémoire
fondée sur une unité atomique de 1 octet et un incrément
d'adresse de 1 octet, avec E8 a I'adresse mémoire la plus
petite, 07 a la seconde plus petite et AQ a la plus grande.

@ Par exemple, les processeurs x86 ont une architecture
petit-boutiste. Cela avait du sens en 1975 pour des raisons de
rapidité mais ne présente plus aucun intérét en 2017.
L'incovénient du little-endian est la moindre lisibilité du code
machine par le programmeur.

@ Dans ce cours, nous représentons les nombres de facon plus
lisible pour le programmeur, c'est a dire selon la convention
big-endian.

5/+4 | T N

nt de base

© Les entiers non signés
o Généralités
@ Changement de base
@ Opérations

o/+4 | P

ent de base

ns

© Les entiers non signés
o Généralités
@ Changement de base
@ Opérations

w4

ement de base

@ Un nombre en base 2 peut-étre vu comme un état de case
mémoire. La base 2 est trés pratique pour les calculs
arithmétiques.

11,/

@ Un nombre en base 2 peut-étre vu comme un état de case
mémoire. La base 2 est trés pratique pour les calculs
arithmétiques.

@ Un nombre en base 2 : un polynéme dont I'indéterminée (X)
est notée 2 (22 + 0 -2 + 20 représente 5 au lieu de X2 + 1).

11,/

@ Un nombre en base 2 peut-étre vu comme un état de case
mémoire. La base 2 est trés pratique pour les calculs
arithmétiques.

@ Un nombre en base 2 : un polynéme dont I'indéterminée (X)
est notée 2 (22 + 0 -2 + 20 représente 5 au lieu de X2 + 1).

@ Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

11,/

@ Un nombre en base 2 peut-étre vu comme un état de case
mémoire. La base 2 est trés pratique pour les calculs
arithmétiques.

@ Un nombre en base 2 : un polynéme dont I'indéterminée (X)
est notée 2 (22 + 0 -2 + 20 représente 5 au lieu de X2 + 1).

@ Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

@ Sur 8 bits, entiers entre 0 et 28 — 1 = 255. Sur N bits, on
représente tous les entiers de 0 3 2V — 1.

11,/

@ Un nombre en base 2 peut-étre vu comme un état de case
mémoire. La base 2 est trés pratique pour les calculs
arithmétiques.

@ Un nombre en base 2 : un polynéme dont I'indéterminée (X)
est notée 2 (22 + 0 -2 + 20 représente 5 au lieu de X2 + 1).

@ Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

@ Sur 8 bits, entiers entre 0 et 28 — 1 = 255. Sur N bits, on
représente tous les entiers de 0 3 2V — 1.

@ Un octet = 8 bits. Avec un octet on représente 256 nombres.

11,/

@ Un nombre en base 2 peut-étre vu comme un état de case
mémoire. La base 2 est trés pratique pour les calculs
arithmétiques.

@ Un nombre en base 2 : un polynéme dont I'indéterminée (X)
est notée 2 (22 + 0 -2 + 20 représente 5 au lieu de X2 + 1).

@ Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

@ Sur 8 bits, entiers entre 0 et 28 — 1 = 255. Sur N bits, on
représente tous les entiers de 0 3 2V — 1.

@ Un octet = 8 bits. Avec un octet on représente 256 nombres.

@ En base 2 sur 32 bits, on représente les entiers de 0 a
232 1 = 4294967295 (4 milliards environ).

11,/

Conventions

@ Pour distinguer cent un en base 10, du nombre cinqg écrit en
base 2, on indice I'écriture binaire. 101 ou 101,.

@ Pour les autres bases, on indique le nombre de symboles, par
exemple 4325 représente un nombre en base 5.

R e T

Généralités

Opérations

© Les entiers non signés
o Généralités
@ Changement de base
@ Opérations

13,44 O

éralités

Opérations

Passage de la base 10 a la base k

1 fonction changement_base(n, k)

2 entree : n (le nb)

3 entree : k (la base)

4 tant_que n!=0

5 debut

6 a_i := reste de la division de n par k
7 n := quotient de la division de n par k
8 fin

9 Inverser la suite des restes

10 renvoyer la suite des restes

1/

Généralités

Opérations

Exemple

Exercice

Ecrire 123 en binaire.

123 = 1111011,

FIGURE — Méthode 1
123 r»
T
ﬁ@

15/

Généralités

Opérations

Base deux a dix

11110115 représente 123 :

Ix20 +1x22+1x2%+1x234+0x22+1x2+1x20=123.

1/

Sralités
ent de base

© Les entiers non signés
o Généralités
@ Changement de base
@ Opérations

17,44 O

Addition en binaire

@ Principe :
e 0+0=0
e 0+1=1
e 14+0=1
e 1+ 1 =0 (avec retenue)
@ Exemple :
1 x ok * % (¥ : retenue)
2 101111011
3+ 1100001
4
5 = 111011100

Ceci est cablé dans le processeur dans la partie réservée aux calculs
arithmétiques et logiques (LPU).

B e T T T

Soustraction en binaire

@ Principe :
e 0-0 = 0. Retenue : non

@ 0-1=1 Retenue : oui
o 0-(1+41) =0, ol le 1 rouge est la retenue. Retenue : oui
o 1-(1+1) =1, ou le 1 rouge est la retenue. Retenue : oui
e 1-0 = 1. Retenue : non
e 1-1=0. Retenue : non
@ Exemple :

1 * x % (* : retenue)

2 1101110

3 - 10111

4

5 =1010111

La retenue est a ajouter aux chiffres sur la ligne du bas.
Exemple : 100 - 011 = 001.

R e T

© Entiers signés

B e T

Mettre le signe en bit de poids fort

@ Ce qu'on a : sur 8 bits on représente les entiers non signés de
0 a 255.

R e T

Mettre le signe en bit de poids fort

@ Ce qu'on a : sur 8 bits on représente les entiers non signés de
0 a 255.

@ Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 a 127.

R e T

Mettre le signe en bit de poids fort

@ Ce qu'on a : sur 8 bits on représente les entiers non signés de
0 a 255.

@ Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 a 127.

o Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.

R e T

Mettre le signe en bit de poids fort

@ Ce qu'on a : sur 8 bits on représente les entiers non signés de
0 a 255.

@ Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 a 127.

o Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.

@ Premiere idée 00000010, = +2 en décimal et
10000010, = —2 en décimal. PB :

R e T

Mettre le signe en bit de poids fort

@ Ce qu'on a : sur 8 bits on représente les entiers non signés de
0 a 255.

@ Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 a 127.

o Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.

@ Premiere idée 00000010, = +2 en décimal et
10000010, = —2 en décimal. PB :

@ Le nombre 0 posséde deux représentations 10000000, et
00000000, (0 et —0).

R e T

Mettre le signe en bit de poids fort

@ Ce qu'on a : sur 8 bits on représente les entiers non signés de
0 a 255.

@ Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 a 127.

o Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.

@ Premiere idée 00000010, = +2 en décimal et
10000010, = —2 en décimal. PB :

@ Le nombre 0 posséde deux représentations 10000000, et
00000000, (0 et —0).

@ |l faudrait modifier I'algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3+ (—4) = —1 Mais

OOOOOOlli i 10000100i = 10000111i — — 7.
21/44]

Représentation des entiers signés en complément a 2 sur
16 bits

@ Prenons I'exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre —32768 et 32767

B e T T

Représentation des entiers signés en complément a 2 sur
16 bits

@ Prenons I'exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre —32768 et 32767

@ entier relatif x positif ou nul : pas de changement.

B e T T

Représentation des entiers signés en complément a 2 sur
16 bits

@ Prenons I'exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre —32768 et 32767

@ entier relatif x positif ou nul : pas de changement.

@ entier relatif x strictement négatif : représenté par |'entier
naturel x 4+ 216 = x 4+ 65536, qui est compris entre 32768 et
65535.

B e T T

Représentation des entiers signés en complément a 2 sur
16 bits

@ Prenons I'exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre —32768 et 32767

@ entier relatif x positif ou nul : pas de changement.

@ entier relatif x strictement négatif : représenté par |'entier
naturel x 4+ 216 = x 4+ 65536, qui est compris entre 32768 et
65535.

@ Ainsi les entiers naturels de 0 a 32767 servent a représenter
les entiers relatifs positifs ou nul

B e T T

Représentation des entiers signés en complément a 2 sur
16 bits

@ Prenons I'exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre —32768 et 32767

@ entier relatif x positif ou nul : pas de changement.

@ entier relatif x strictement négatif : représenté par |'entier
naturel x 4+ 216 = x 4+ 65536, qui est compris entre 32768 et
65535.

@ Ainsi les entiers naturels de 0 a 32767 servent a représenter
les entiers relatifs positifs ou nul

@ et les entiers naturels de 32768 a 65535 servent a représenter
les entiers relatifs strictement négatifs

R e T T

Représentation des entiers signés en complément a 2

FIGURE — Représentation des entiers signés en complément a deux sur
16 bits

0

65535 0

32768 3276

132767

B s T T T

Représentation des entiers signés en complément a 2 sur N
bits (CA2N)

Méthode 1

@ On veut représenter un nombre —2N=1 < X < 2N=1 en CA2N

24,44/ O

Représentation des entiers signés en complément a 2 sur N
bits (CA2N)

Méthode 1

@ On veut représenter un nombre —2N=1 < X < 2N=1 en CA2N

@ Si X est négatif, on calcule la représentation binaire de
2N 1+ X. Le premier bit sera automatiquement 1.

24,44/ O

Représentation des entiers signés en complément a 2 sur N
bits (CA2N)

Méthode 1

@ On veut représenter un nombre —2N=1 < X < 2N=1 en CA2N

@ Si X est négatif, on calcule la représentation binaire de
2N 1+ X. Le premier bit sera automatiquement 1.

@ Si X est positif, le premier bit sera a 0 et les N — 1 autres bits
seront la représentation de X en base 2 sur (N — 1) bits.

24,44/ O

Représentation des entiers signés en complément a 2 sur N
bits (CA2N)

Méthode 1

@ On veut représenter un nombre —2N=1 < X < 2N=1 en CA2N

@ Si X est négatif, on calcule la représentation binaire de
2N 1+ X. Le premier bit sera automatiquement 1.

@ Si X est positif, le premier bit sera a 0 et les N — 1 autres bits
seront la représentation de X en base 2 sur (N — 1) bits.

@ Exemple -67 en complément a 2 sur 8 bits. :

S anNoyer | boonon e b

Représentation des entiers signés en complément a 2 sur N
bits (CA2N)

Méthode 1

@ On veut représenter un nombre —2N=1 < X < 2N=1 en CA2N

@ Si X est négatif, on calcule la représentation binaire de
2N 1+ X. Le premier bit sera automatiquement 1.
@ Si X est positif, le premier bit sera a 0 et les N — 1 autres bits
seront la représentation de X en base 2 sur (N — 1) bits.
@ Exemple -67 en complément a 2 sur 8 bits. :
Q 22 - 67=189

S anNoyer | boonon e b

Représentation des entiers signés en complément a 2 sur N
bits (CA2N)

Méthode 1

@ On veut représenter un nombre —2N=1 < X < 2N=1 en CA2N

@ Si X est négatif, on calcule la représentation binaire de
2N 1+ X. Le premier bit sera automatiquement 1.

@ Si X est positif, le premier bit sera a 0 et les N — 1 autres bits
seront la représentation de X en base 2 sur (N — 1) bits.

@ Exemple -67 en complément a 2 sur 8 bits. :
Q 22 - 67=189 .
@ 189 — 10111101

24,44/ O

CA2n compatibilité avec |'addition

@ On reprend I'exemple de 3 + (—4).

R e T T T

CA2n compatibilité avec |'addition

@ On reprend 'exemple de 3 4 (—4).
e En CA28, 3 s’écrit comme 00000011°

R e T T T

CA2n compatibilité avec |'addition

@ On reprend I'exemple de 3 + (—4).

o En CA28, 3 s’écrit comme 000000118
o En CA28, pour —4 :

R e T T T

CA2n compatibilité avec |'addition

@ On reprend I'exemple de 3 + (—4).

e En CA28, 3 s'écrit comme 00000011°
o En CA28, pour —4 :
o —4 4 256 = 252 — T1111100°

R e T T T

CA2n compatibilité avec |'addition

@ On reprend I'exemple de 3 + (—4).
e En CA28, 3 s'écrit comme 00000011

o En CA28, pour —4:
o —4+ 256 = 252 T1111100°

@ Addition en binaire :

8

1 00000011
2 +11111100
3 -
4 11111111

2544 O

CA2n compatibilité avec |'addition

@ On reprend I'exemple de 3 + (—4).
e En CA28, 3 s'écrit comme 00000011

o En CA28, pour —4:
o —4+ 256 = 252 T1111100°

@ Addition en binaire :

8

1 00000011
2 +11111100
3 -
4 11111111

@ Que des 1 : il s'agit de —1 en CA28. Plus besoin de modifier
I'algorithme d’addition !

2544/ O

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.

26/«

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.

26/«

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.
@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.

R e T T T

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.
@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.
© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

R e T T T

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.

@ Si le nombre est positif, donner son expression en binaire sur n
bits.

@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.

© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

@ Ajouter 1 au bit de poids faible (attention aux retenues)!

R e T T T

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.

@ Si le nombre est positif, donner son expression en binaire sur n
bits.

@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.

© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

@ Ajouter 1 au bit de poids faible (attention aux retenues)!

@ Exo : prouver que c'est équivalent a la méthode 1.

R e T T T

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.
@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.
© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).
@ Ajouter 1 au bit de poids faible (attention aux retenues)!
@ Exo : prouver que c'est équivalent a la méthode 1.
@ Exemple -67 en complément a 2 sur 8 bits. :

26/«

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.
@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.
© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).
@ Ajouter 1 au bit de poids faible (attention aux retenues)!
@ Exo : prouver que c'est équivalent a la méthode 1.
@ Exemple -67 en complément a 2 sur 8 bits. :
© 67 : 01000011,

26/«

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.
@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.
© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).
@ Ajouter 1 au bit de poids faible (attention aux retenues)!
@ Exo : prouver que c'est équivalent a la méthode 1.
@ Exemple -67 en complément a 2 sur 8 bits. :
© 67 : 01000011,
@ inversion : 10111100,

26/«

Représentation des entiers signés en complément a 2 sur n

bits
Méthode 2

e Complément a 2 (sur n bits). Ici n = 8.
@ Si le nombre est positif, donner son expression en binaire sur n
bits.
@ Si c'est —2V~1 son complément a 2 est 1 suivi de N — 1 zéros.
© Si le nombre est négatif mais > —2V~1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).
@ Ajouter 1 au bit de poids faible (attention aux retenues)!
@ Exo : prouver que c'est équivalent a la méthode 1.
@ Exemple -67 en complément a 2 sur 8 bits. :
@ 67 : 01000011,
@ inversion : 10111100,
© ajout de 1 au bit de poids faible : 10111101,. Finalement
1011 1101".
R e T T T

Calcul de téete

Si I'on doit transformer un nombre négatif non nul en son
complément a deux "de téte”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu'au premier 1 (compris) puis
d'inverser tous les suivants.

@ Prenons par exemple le nombre -20

27+

Calcul de téete

Si I'on doit transformer un nombre négatif non nul en son
complément a deux "de téte”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu'au premier 1 (compris) puis
d'inverser tous les suivants.

@ Prenons par exemple le nombre -20

@ Codage binaire de sa valeur absolue 20 : 00010100

27+

Calcul de téete

Si I'on doit transformer un nombre négatif non nul en son
complément a deux "de téte”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu'au premier 1 (compris) puis
d'inverser tous les suivants.

@ Prenons par exemple le nombre -20
@ Codage binaire de sa valeur absolue 20 : 00010100
@ On garde la partie a droite telle quelle : 00010100

27+

Calcul de téete

Si I'on doit transformer un nombre négatif non nul en son
complément a deux "de téte”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu'au premier 1 (compris) puis
d'inverser tous les suivants.

@ Prenons par exemple le nombre -20
@ Codage binaire de sa valeur absolue 20 : 00010100
@ On garde la partie a droite telle quelle : 00010100

@ On inverse la partie de gauche apres le premier un : 11101100

27+

Calcul de téete

Si I'on doit transformer un nombre négatif non nul en son
complément a deux "de téte”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu'au premier 1 (compris) puis
d'inverser tous les suivants.

@ Prenons par exemple le nombre -20
@ Codage binaire de sa valeur absolue 20 : 00010100
@ On garde la partie a droite telle quelle : 00010100

@ On inverse la partie de gauche apres le premier un : 11101100
o Et voici -20 : T1101100°.

27+

Soustraction binaire grace au complément a 2

@ On veut effectuer 15 — 14

3y wwanNoyer | behnonde b

Soustraction binaire grace au complément a 2

@ On veut effectuer 15 — 14
@ En binaire 15 — 11115 et 14 — 1110,

3y wwanNoyer | behnonde b

Soustraction binaire grace au complément a 2

@ On veut effectuer 15 — 14
@ En binaire 15 — 11115 et 14 — 1110,

@ 15 et —14 peuvent s'écrire en CA25. 15— 01111 et
—14 — 10010

25+«

Soustraction binaire grace au complément a 2

@ On veut effectuer 15 — 14
@ En binaire 15 — 11115 et 14 — 1110,

@ 15 et —14 peuvent s'écrire en CA25. 15— 01111 et
—14 — 10010

@ On effectue ensuite une simple addition en CA25.

25+«

Soustraction binaire grace au complément a 2

On veut effectuer 15 — 14

En binaire 15 — 11115 et 14 — 1110,

15 et —14 peuvent s'écrire en CA25. 15 — 01111 et
—14 v 10010°

@ On effectue ensuite une simple addition en CA25.
°

1 * %k
2 01111
3 10010
4 44—
5 (1)00001

Le bit le plus a gauche (1) est un artefact (Altération du
résultat d'un examen due au procédé technique utilisé) qui
n'est pas pris en compte. On sait que le résultat de 15 — 14
tient en CA25 puisque ce sont deux nombres de signes
opposés qui tiennent en CA25.

25+«

Soustraction binaire grace au complément a 2

@ On veut effectuer 15 — 14
@ En binaire 15+ 11115 et 14+ 1110>
@ 15 et —14 peuvent s'écrire en CA25. 15— 01111 et

—14 v 10010°
@ On effectue ensuite une simple addition en CA25.
].° %k %k k
2 01111
3 10010
4
5 (1)00001

. On sait que le résultat de 15 — 14 tient en CA25 puisque ce
sont deux nombres de signes opposés qui tiennent en CA25.

@ On trouve donc que 15 — 14 vaut 000015, ce qui correspond a
1 en CA25.

25+«

Du complément a 2 a la notation décimale

@ Soit X de complément a 2 sur 8 bits 1010 1101°.

B s T T T

Du complément a 2 a la notation décimale

@ Soit X de complément a 2 sur 8 bits 1010 1101°.
e Nombre négatif non nul (1 en bit de poids fort).

B s T T T

Du complément a 2 a la notation décimale

@ Soit X de complément a 2 sur 8 bits 1010 1101°.
e Nombre négatif non nul (1 en bit de poids fort).

@ On peut coder X en complément a 2 sur 8 bits, donc
-8l _128< X< —1

B s T T T

Du complément a 2 a la notation décimale

Soit X de complément a 2 sur 8 bits 1010 1101°.
Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément a 2 sur 8 bits, donc
—2871=_128< X< —1.

@ On calcule le codage décimal de 10101101, puis on soustrait
256 (i.e. —28).

B s T T T

Du complément a 2 a la notation décimale

Soit X de complément a 2 sur 8 bits 1010 1101°.
Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément a 2 sur 8 bits, donc
-8l _128< X< —1

@ On calcule le codage décimal de 10101101, puis on soustrait
256 (i.e. —28).

—(1x28)+1x2"+0x 20 +1x2°4+0x 2%+ ...
I x 2 41 x2240x20+1x20=-83=X

B s T T T

Parité et signe en complément a 2

@ Pour reconnaitre un nombre positif en complément a 2 sur n
bits, il suffit que son bit de poids fort soit a 0,

B e T T T

Parité et signe en complément a 2

@ Pour reconnaitre un nombre positif en complément a 2 sur n
bits, il suffit que son bit de poids fort soit a 0,

@ Négatif : son bit de poids fort a 1.

B e T T T

Parité et signe en complément a 2

@ Pour reconnaitre un nombre positif en complément a 2 sur n
bits, il suffit que son bit de poids fort soit a 0,

@ Négatif : son bit de poids fort a 1.

@ -1 est toujours |'entier qui, en complément a deux sur n bits,
a une représentation ne comportant que des 1.

B e T T T

Représentation des entiers signés en complément a 2

FIGURE — Quelques entiers signés en complément a 2

bit
de
signe
o

-2
=127

mlE|m|m]|lo|o]|a
Q0 0 W H 0 0 0 W
0 0 H M O B0 0 M
Q0 0 W H 0O 0 0 W
Q0 W H O 0 0 W
@ 0 H H O 0 0 M
olo|m|m|o|o|m]|Km
e|lH|o|H|e|r|o |k
LA | N (A | N (A | N (A |
]

-128

Entiers de 8 bits en complément & deux

En complément a 2 sur N bits on représente tous les entiers de

—2N=1 3 2N=1 _ 1. Sur 32 bits : de —231 = —2147483648 2

231 — 1 = 2147483647 (plus ou moins 2 milliards).
e T T T

Extension de format

F1GURE — Duplication du bit de poids fort

4 Extension de signe:
Si I'on veut passer un entier signé x d'un format n bits vers un
format n+k bits, en gardant la méme valeur, il suffit de faire une
extension de signe: le bit de signe est répété sur les nouveaux k

bits de poids fort

] P I [

(] I | | I B |

Exemple : soit 10001000° un entier signé représenté en
complément a 2 sur 8 bits. En complément a 2 sur 12 bits, on

obtient : 111110001000

R s T

Overflow

o Il 'y a overflow (dépassement de capacité) lorsque le nombre a
représenter ne tient pas dans le format choisi.

B e T T T

Overflow

o Il 'y a overflow (dépassement de capacité) lorsque le nombre a
représenter ne tient pas dans le format choisi.

@ Pour reconnaitre un overflow dans une addition en
complément a 2 :

B e T T T

Overflow

o Il 'y a overflow (dépassement de capacité) lorsque le nombre a
représenter ne tient pas dans le format choisi.

@ Pour reconnaitre un overflow dans une addition en
complément a 2 :

@ si les deux opérandes sont du méme signe : dépassement si le
résultat est de signe opposé,

B e T T T

Overflow

o Il 'y a overflow (dépassement de capacité) lorsque le nombre a
représenter ne tient pas dans le format choisi.

@ Pour reconnaitre un overflow dans une addition en
complément a 2 :

@ si les deux opérandes sont du méme signe : dépassement si le
résultat est de signe opposé,

@ Si les deux opérandes sont de signes opposés, il n'y a jamais
dépassement.

B e T T T

Exemple

e On additionne 0I111000° (120) et 01110011° (115) en CAZ28.

gy wanNoyer | boonon b

Exemple

e On additionne 0I111000° (120) et 01110011° (115) en CAZ28.
°

1 * 5k ok k
2 01110011
3 401111000
4 -—
5

11101011 (changement de signe donc overflow)

34,44/ O

Exemple

e On additionne 0I111000° (120) et 01110011° (115) en CAZ28.
°

1 * 5k ok k
2 01110011
3 401111000
4 -—
5

11101011 (changement de signe donc overflow)

@ On constate un overflow.

34,44/ O

Exemple

e On additionne 0I111000° (120) et 01110011° (115) en CAZ28.
°

1 * 5k ok k

2 01110011
3 401111000
4 -—
5

11101011 (changement de signe donc overflow)

@ On constate un overflow.
o On passe au CA29. 120 : 001111000° et 115 : 001110011

34,44/ O

Exemple

e On additionne 0I111000° (120) et 01110011° (115) en CAZ28.
°

1 * 5k ok k

2 01110011
3 401111000
4 -—
5

11101011 (changement de signe donc overflow)

@ On constate un overflow.
o On passe au CA29. 120 : 001111000° et 115 : 001110011

1 * Kk ok

2 001110011
3 4001111000
4 -
5

011101011

34,44/ O

Exemple

e On additionne 0I111000° (120) et 01110011° (115) en CAZ28.
°

1 * 5k ok k

2 01110011
3 401111000
4 -—
5

11101011 (changement de signe donc overflow)

@ On constate un overflow.
o On passe au CA29. 120 : 001111000° et 115 : 001110011

1 * Kk ok

2 001110011
3 4001111000
4 -
5

011101011

o Le résultat, 011101011° représente 235 en CA29.
34,44/ O

@ Les entiers en Python

B s T T T

Cette section hors programme est laissée au lecteur curieux.

B e T T T

Découpage des entiers en PYTHON

D’apres Nicolas Pécheux.

@ Les entiers en Python ont une précision non limitée. lls ne
fonctionnent donc pas en complément a 2.

B e T T T

Découpage des entiers en PYTHON

D’apres Nicolas Pécheux.
@ Les entiers en Python ont une précision non limitée. lls ne
fonctionnent donc pas en complément a 2.

@ Sur une machine 32 bits, la représentation binaire d'un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

B e T T T

Découpage des entiers en PYTHON

D’apres Nicolas Pécheux.
@ Les entiers en Python ont une précision non limitée. lls ne
fonctionnent donc pas en complément a 2.

@ Sur une machine 32 bits, la représentation binaire d'un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

@ Les cases du tableau sont donc les coefficients de x dans sa
représentation en base 21°.

B e T T T

Découpage des entiers en PYTHON

D’apres Nicolas Pécheux.
@ Les entiers en Python ont une précision non limitée. lls ne
fonctionnent donc pas en complément a 2.

@ Sur une machine 32 bits, la représentation binaire d'un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

@ Les cases du tableau sont donc les coefficients de x dans sa
représentation en base 21°.

@ A ce tableau est associée un (petit) entier indiquant le nombre
de chiffres de x dans la base 21°.

B e T T T

Exemple

@ Soit le nombre x = 1234567891011. Il s'écrit en binaire

000010001111101 | 110001111110110 | 000100001000011
114919 2559010 213?)10

B s T T T

Exemple

@ Soit le nombre x = 1234567891011. Il s'écrit en binaire

000010001111101 | 110001111110110 | 000100001000011
114919 2559010 213?)10

o Dans la base 21, il faut 32768 symboles pour les digits. On
peut garder |'écriture en base 10 comme symbole. Ainsi x
s'écrit

1149102559010211519 ,, en base 2'°

B s T T T

Exemple

@ Soit le nombre x = 1234567891011. Il s'écrit en binaire

000010001111101 | 110001111110110 | 000100001000011
114919 2559010 213?)10

o Dans la base 21, il faut 32768 symboles pour les digits. On
peut garder |'écriture en base 10 comme symbole. Ainsi x
s'écrit

1149102559010211519 ,, en base 2'°

@ Alors x est représenté en PYTHON par le tableau [2115,
25590, 1149] (little-endian) et I'entier 3.

Et —x est représenté par le méme tableau et —3.

B s T T T

Opérations arithmétiques

o La base choisie (2!5 pour une machine 32 bits, 23° pour une

64 bits) ne doit pas étre trop grande pour que le processeur
puisse faire les opérations arithmétiques entre les digits.

R e T T T

Opérations arithmétiques

La base choisie (215 pour une machine 32 bits, 239 pour une

64 bits) ne doit pas étre trop grande pour que le processeur
puisse faire les opérations arithmétiques entre les digits.

En cas d’'addition par exemple, les coefficients de mémes
exposants sont additionnés par le processeur. Un petit logiciel
est ensuite chargé d'harmoniser les résultats (en cas de
propagation de retenue par exemple).

R e T T T

Opérations arithmétiques

215 230

La base choisie (2*° pour une machine 32 bits, pour une
64 bits) ne doit pas étre trop grande pour que le processeur
puisse faire les opérations arithmétiques entre les digits.

En cas d’'addition par exemple, les coefficients de mémes
exposants sont additionnés par le processeur. Un petit logiciel
est ensuite chargé d'harmoniser les résultats (en cas de
propagation de retenue par exemple).

Ce traitement logiciel ralenti les opérations arithmétiques sur
les entiers PYTHON.

R e T T T

@ Pour connaitre la base (en exposant de 2) et la taille

d'occupation (en octets) de chaque digit dans cette base, il
suffit d'entrer

{1import sys }

2 sys.int_info

B e T

@ Pour connaitre la base (en exposant de 2) et la taille

d'occupation (en octets) de chaque digit dans cette base, il
suffit d'entrer

{1import sys }

2sys.int_info

@ On obtient

sys.int_info(bits_per_digit=30,
sizeof_digit=4)

+0,44 N O

	Introduction
	Les entiers non signés
	Généralités
	Changement de base
	Opérations

	Entiers signés
	Les entiers en Python

