
Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des nombres

Ivan Noyer

Lycée Leconte de Lisle

1/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

2/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Crédits

Informatique pour tous en classes préparatoires

aux grande écoles (Eyrolles)

Wikipédia : Complément à deux et ce Wiki

Nombres flottants : Wikipedia en génréal

cpprefrence (Fonction de bibliothèques en C)

3/44 Ivan Noyer Représentation des nombres

http://fr.wikipedia.org/wiki/Compl%C3%A9ment_%C3%A0_deux
http://fr.wikibooks.org/w/index.php?title=Architecture_des_ordinateurs/Repr%C3%A9sentation_des_donn%C3%A9es&oldid=360556
http://fr.wikipedia.org/wiki/IEEE_754
https://en.cppreference.com/w/c/numeric/math/nextafter

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

4/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Boutisme

En informatique, certaines données telles que les nombres
entiers peuvent être représentées sur plusieurs octets. L’ordre
dans lequel ces octets sont organisés en mémoire ou dans une
communication est appelé endianness (mot anglais traduit par
� boutisme � ou par � endianisme �).

De la même manière que certains langages humains s’écrivent
de gauche à droite, et d’autres s’écrivent de droite à gauche, il
existe une alternative majeure à l’organisation des octets
représentant une donnée : l’orientation big-endian et
l’orientation little-endian.

En maths, la convention d’écriture des polynômes est le
big-endian (ou mot de poids fort en tête) comme dans
X 3 + X 2 + 1.

5/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Boutisme

En informatique, certaines données telles que les nombres
entiers peuvent être représentées sur plusieurs octets. L’ordre
dans lequel ces octets sont organisés en mémoire ou dans une
communication est appelé endianness (mot anglais traduit par
� boutisme � ou par � endianisme �).

De la même manière que certains langages humains s’écrivent
de gauche à droite, et d’autres s’écrivent de droite à gauche, il
existe une alternative majeure à l’organisation des octets
représentant une donnée : l’orientation big-endian et
l’orientation little-endian.

En maths, la convention d’écriture des polynômes est le
big-endian (ou mot de poids fort en tête) comme dans
X 3 + X 2 + 1.

5/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Boutisme

En informatique, certaines données telles que les nombres
entiers peuvent être représentées sur plusieurs octets. L’ordre
dans lequel ces octets sont organisés en mémoire ou dans une
communication est appelé endianness (mot anglais traduit par
� boutisme � ou par � endianisme �).

De la même manière que certains langages humains s’écrivent
de gauche à droite, et d’autres s’écrivent de droite à gauche, il
existe une alternative majeure à l’organisation des octets
représentant une donnée : l’orientation big-endian et
l’orientation little-endian.

En maths, la convention d’écriture des polynômes est le
big-endian (ou mot de poids fort en tête) comme dans
X 3 + X 2 + 1.

5/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Gulliver

Les termes big-endian et little-endian ont été popularisés dans
le domaine informatique par Dany Cohen, en référence aux
� Voyages de Gulliver �, roman satirique de Jonathan Swift.

En 1721, Swift décrit comment de nombreux habitants de
Lilliput refusent d’obéir à un décret obligeant à manger les
œufs à la coque par le petit bout.

La répression pousse les rebelles, dont la cause est appelée
big-endian, à se réfugier dans l’empire rival de Blefuscu ce qui
entretient une guerre longue et meurtrière entre les deux
empires.

Figure – un oeuf

6/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Gulliver

Les termes big-endian et little-endian ont été popularisés dans
le domaine informatique par Dany Cohen, en référence aux
� Voyages de Gulliver �, roman satirique de Jonathan Swift.

En 1721, Swift décrit comment de nombreux habitants de
Lilliput refusent d’obéir à un décret obligeant à manger les
œufs à la coque par le petit bout.

La répression pousse les rebelles, dont la cause est appelée
big-endian, à se réfugier dans l’empire rival de Blefuscu ce qui
entretient une guerre longue et meurtrière entre les deux
empires.

Figure – un oeuf

6/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Gulliver

Les termes big-endian et little-endian ont été popularisés dans
le domaine informatique par Dany Cohen, en référence aux
� Voyages de Gulliver �, roman satirique de Jonathan Swift.

En 1721, Swift décrit comment de nombreux habitants de
Lilliput refusent d’obéir à un décret obligeant à manger les
œufs à la coque par le petit bout.

La répression pousse les rebelles, dont la cause est appelée
big-endian, à se réfugier dans l’empire rival de Blefuscu ce qui
entretient une guerre longue et meurtrière entre les deux
empires.

Figure – un oeuf

6/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Big-endian

Soit un entier sur 32 bits à écrire en en mémoire, par exemple
0xA0B70708 en notation hexadécimal. Pour une structure de
mémoire fondée sur une unité atomique de 1 octet et un
incrément d’adresse de 1 octet, la convention big-endian
consiste à enregistrer A0 à l’adresse mémoire la plus petite,
B7 à la seconde plus petite et 08 à la plus grande.

Tous les protocoles TCP/IP communiquent en big-endian9. Il
en va de même pour le protocole PCI Express. Les processeurs
Motorola 68000, les SPARC (Sun Microsystems) ou encore les
System/370 (IBM) sont des architectures qui respectent cette
règle.

7/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Big-endian

Soit un entier sur 32 bits à écrire en en mémoire, par exemple
0xA0B70708 en notation hexadécimal. Pour une structure de
mémoire fondée sur une unité atomique de 1 octet et un
incrément d’adresse de 1 octet, la convention big-endian
consiste à enregistrer A0 à l’adresse mémoire la plus petite,
B7 à la seconde plus petite et 08 à la plus grande.

Tous les protocoles TCP/IP communiquent en big-endian9. Il
en va de même pour le protocole PCI Express. Les processeurs
Motorola 68000, les SPARC (Sun Microsystems) ou encore les
System/370 (IBM) sont des architectures qui respectent cette
règle.

7/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Little-endian

En little-endian (� mot de poids faible en tête �), le nombre
0xA0B70708 est enregistré, pour une structure de mémoire
fondée sur une unité atomique de 1 octet et un incrément
d’adresse de 1 octet, avec E8 à l’adresse mémoire la plus
petite, 07 à la seconde plus petite et A0 à la plus grande.

Par exemple, les processeurs x86 ont une architecture
petit-boutiste. Cela avait du sens en 1975 pour des raisons de
rapidité mais ne présente plus aucun intérêt en 2017.
L’incovénient du little-endian est la moindre lisibilité du code
machine par le programmeur.

Dans ce cours, nous représentons les nombres de façon plus
lisible pour le programmeur, c’est à dire selon la convention
big-endian.

8/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Little-endian

En little-endian (� mot de poids faible en tête �), le nombre
0xA0B70708 est enregistré, pour une structure de mémoire
fondée sur une unité atomique de 1 octet et un incrément
d’adresse de 1 octet, avec E8 à l’adresse mémoire la plus
petite, 07 à la seconde plus petite et A0 à la plus grande.

Par exemple, les processeurs x86 ont une architecture
petit-boutiste. Cela avait du sens en 1975 pour des raisons de
rapidité mais ne présente plus aucun intérêt en 2017.
L’incovénient du little-endian est la moindre lisibilité du code
machine par le programmeur.

Dans ce cours, nous représentons les nombres de façon plus
lisible pour le programmeur, c’est à dire selon la convention
big-endian.

8/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Little-endian

En little-endian (� mot de poids faible en tête �), le nombre
0xA0B70708 est enregistré, pour une structure de mémoire
fondée sur une unité atomique de 1 octet et un incrément
d’adresse de 1 octet, avec E8 à l’adresse mémoire la plus
petite, 07 à la seconde plus petite et A0 à la plus grande.

Par exemple, les processeurs x86 ont une architecture
petit-boutiste. Cela avait du sens en 1975 pour des raisons de
rapidité mais ne présente plus aucun intérêt en 2017.
L’incovénient du little-endian est la moindre lisibilité du code
machine par le programmeur.

Dans ce cours, nous représentons les nombres de façon plus
lisible pour le programmeur, c’est à dire selon la convention
big-endian.

8/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

9/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

10/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base 2

Un nombre en base 2 peut-être vu comme un état de case
mémoire. La base 2 est très pratique pour les calculs
arithmétiques.

Un nombre en base 2 : un polynôme dont l’indéterminée (X)
est notée 2 (22 + 0 · 21 + 20 représente 5 au lieu de X 2 + 1).

Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

Sur 8 bits, entiers entre 0 et 28 − 1 = 255. Sur N bits, on
représente tous les entiers de 0 à 2N − 1.

Un octet = 8 bits. Avec un octet on représente 256 nombres.

En base 2 sur 32 bits, on représente les entiers de 0 à
232 − 1 = 4294967295 (4 milliards environ).

11/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base 2

Un nombre en base 2 peut-être vu comme un état de case
mémoire. La base 2 est très pratique pour les calculs
arithmétiques.

Un nombre en base 2 : un polynôme dont l’indéterminée (X)
est notée 2 (22 + 0 · 21 + 20 représente 5 au lieu de X 2 + 1).

Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

Sur 8 bits, entiers entre 0 et 28 − 1 = 255. Sur N bits, on
représente tous les entiers de 0 à 2N − 1.

Un octet = 8 bits. Avec un octet on représente 256 nombres.

En base 2 sur 32 bits, on représente les entiers de 0 à
232 − 1 = 4294967295 (4 milliards environ).

11/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base 2

Un nombre en base 2 peut-être vu comme un état de case
mémoire. La base 2 est très pratique pour les calculs
arithmétiques.

Un nombre en base 2 : un polynôme dont l’indéterminée (X)
est notée 2 (22 + 0 · 21 + 20 représente 5 au lieu de X 2 + 1).

Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

Sur 8 bits, entiers entre 0 et 28 − 1 = 255. Sur N bits, on
représente tous les entiers de 0 à 2N − 1.

Un octet = 8 bits. Avec un octet on représente 256 nombres.

En base 2 sur 32 bits, on représente les entiers de 0 à
232 − 1 = 4294967295 (4 milliards environ).

11/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base 2

Un nombre en base 2 peut-être vu comme un état de case
mémoire. La base 2 est très pratique pour les calculs
arithmétiques.

Un nombre en base 2 : un polynôme dont l’indéterminée (X)
est notée 2 (22 + 0 · 21 + 20 représente 5 au lieu de X 2 + 1).

Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

Sur 8 bits, entiers entre 0 et 28 − 1 = 255. Sur N bits, on
représente tous les entiers de 0 à 2N − 1.

Un octet = 8 bits. Avec un octet on représente 256 nombres.

En base 2 sur 32 bits, on représente les entiers de 0 à
232 − 1 = 4294967295 (4 milliards environ).

11/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base 2

Un nombre en base 2 peut-être vu comme un état de case
mémoire. La base 2 est très pratique pour les calculs
arithmétiques.

Un nombre en base 2 : un polynôme dont l’indéterminée (X)
est notée 2 (22 + 0 · 21 + 20 représente 5 au lieu de X 2 + 1).

Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

Sur 8 bits, entiers entre 0 et 28 − 1 = 255. Sur N bits, on
représente tous les entiers de 0 à 2N − 1.

Un octet = 8 bits. Avec un octet on représente 256 nombres.

En base 2 sur 32 bits, on représente les entiers de 0 à
232 − 1 = 4294967295 (4 milliards environ).

11/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base 2

Un nombre en base 2 peut-être vu comme un état de case
mémoire. La base 2 est très pratique pour les calculs
arithmétiques.

Un nombre en base 2 : un polynôme dont l’indéterminée (X)
est notée 2 (22 + 0 · 21 + 20 représente 5 au lieu de X 2 + 1).

Nombres entiers : Couramment stockés sur 32 ou 64 bits.
Dans les exemples ci-dessous : souvent sur 8 bits (pour des
raisons de place).

Sur 8 bits, entiers entre 0 et 28 − 1 = 255. Sur N bits, on
représente tous les entiers de 0 à 2N − 1.

Un octet = 8 bits. Avec un octet on représente 256 nombres.

En base 2 sur 32 bits, on représente les entiers de 0 à
232 − 1 = 4294967295 (4 milliards environ).

11/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Conventions

Pour distinguer cent un en base 10, du nombre cinq écrit en
base 2, on indice l’écriture binaire. 101 ou 1012.

Pour les autres bases, on indique le nombre de symboles, par
exemple 4325 représente un nombre en base 5.

12/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

13/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Passage de la base 10 à la base k

1 f o n c t i o n changement base (n , k)
2 ent ree : n (l e nb)
3 ent ree : k (l a base)
4 tant que n!=0 :
5 debut
6 a i := r e s t e de l a d i v i s i o n de n par k
7 n := q u o t i e n t de l a d i v i s i o n de n par k
8 f i n
9 I n v e r s e r l a s u i t e des r e s t e s

10 r envoye r l a s u i t e des r e s t e s

14/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Exemple

Exercice

Écrire 123 en binaire.

123 = 111 10112

Figure – Méthode 1

15/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Base deux à dix

11110112 représente 123 :

1× 26 + 1× 25 + 1× 24 + 1× 23 + 0× 22 + 1× 21 + 1× 20 = 123.

16/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

17/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Addition en binaire

Principe :

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 (avec retenue)

Exemple :

1 ∗ ∗ ∗ ∗ (∗ : r e t e n u e)
2 1 0 1 1 1 1 0 1 1
3 + 1 1 0 0 0 0 1
4 −−−−−−−−−−−−−−−−−−−−−
5 = 1 1 1 0 1 1 1 0 0

Ceci est cablé dans le processeur dans la partie réservée aux calculs
arithmétiques et logiques (LPU).

18/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Généralités
Changement de base
Opérations

Soustraction en binaire

Principe :
0 - 0 = 0. Retenue : non
0 - 1 = 1 Retenue : oui
0 - (1+1) = 0, où le 1 rouge est la retenue. Retenue : oui
1 - (1+1) = 1, où le 1 rouge est la retenue. Retenue : oui
1 - 0 = 1. Retenue : non
1 - 1 = 0. Retenue : non

Exemple :

1 ∗ ∗ ∗ ∗ (∗ : r e t e n u e)
2 1 1 0 1 1 1 0
3 − 1 0 1 1 1
4 −−−−−−−−−−−−−−−−
5 = 1 0 1 0 1 1 1

La retenue est à ajouter aux chiffres sur la ligne du bas.
Exemple : 100 - 011 = 001.

19/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

20/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Mettre le signe en bit de poids fort

Ce qu’on a : sur 8 bits on représente les entiers non signés de
0 à 255.

Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 à 127.
Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.
Première idée 000000102 = +2 en décimal et
100000102 = −2 en décimal. PB :

1 Le nombre 0 possède deux représentations 100000002 et
000000002 (0 et −0).

2 Il faudrait modifier l’algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3 + (−4) = −1 Mais

000000112 + 100001002 = 100001112 → − 7.

21/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Mettre le signe en bit de poids fort

Ce qu’on a : sur 8 bits on représente les entiers non signés de
0 à 255.
Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 à 127.

Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.
Première idée 000000102 = +2 en décimal et
100000102 = −2 en décimal. PB :

1 Le nombre 0 possède deux représentations 100000002 et
000000002 (0 et −0).

2 Il faudrait modifier l’algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3 + (−4) = −1 Mais

000000112 + 100001002 = 100001112 → − 7.

21/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Mettre le signe en bit de poids fort

Ce qu’on a : sur 8 bits on représente les entiers non signés de
0 à 255.
Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 à 127.
Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.

Première idée 000000102 = +2 en décimal et
100000102 = −2 en décimal. PB :

1 Le nombre 0 possède deux représentations 100000002 et
000000002 (0 et −0).

2 Il faudrait modifier l’algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3 + (−4) = −1 Mais

000000112 + 100001002 = 100001112 → − 7.

21/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Mettre le signe en bit de poids fort

Ce qu’on a : sur 8 bits on représente les entiers non signés de
0 à 255.
Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 à 127.
Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.
Première idée 000000102 = +2 en décimal et
100000102 = −2 en décimal. PB :

1 Le nombre 0 possède deux représentations 100000002 et
000000002 (0 et −0).

2 Il faudrait modifier l’algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3 + (−4) = −1 Mais

000000112 + 100001002 = 100001112 → − 7.

21/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Mettre le signe en bit de poids fort

Ce qu’on a : sur 8 bits on représente les entiers non signés de
0 à 255.
Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 à 127.
Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.
Première idée 000000102 = +2 en décimal et
100000102 = −2 en décimal. PB :

1 Le nombre 0 possède deux représentations 100000002 et
000000002 (0 et −0).

2 Il faudrait modifier l’algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3 + (−4) = −1 Mais

000000112 + 100001002 = 100001112 → − 7.

21/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Mettre le signe en bit de poids fort

Ce qu’on a : sur 8 bits on représente les entiers non signés de
0 à 255.
Objectif : une représentation pour les entiers signés (ie. avec
un signe). Sur 8 bits on voudrait représenter les nombres de
-128 à 127.
Notation utilisée sur des écritures de nombres de longueur
donnée (8,16,32 bits). Bit de poids fort du nombre pour le
signe.
Première idée 000000102 = +2 en décimal et
100000102 = −2 en décimal. PB :

1 Le nombre 0 possède deux représentations 100000002 et
000000002 (0 et −0).

2 Il faudrait modifier l’algorithme d’addition. Si un des nombres
est négatif : erreur. Ainsi 3 + (−4) = −1 Mais

000000112 + 100001002 = 100001112 → − 7.
21/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur
16 bits

Prenons l’exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre −32768 et 32767

entier relatif x positif ou nul : pas de changement.

entier relatif x strictement négatif : représenté par l’entier
naturel x + 216 = x + 65536, qui est compris entre 32768 et
65535.

Ainsi les entiers naturels de 0 à 32767 servent à représenter
les entiers relatifs positifs ou nul

et les entiers naturels de 32768 à 65535 servent à représenter
les entiers relatifs strictement négatifs

22/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur
16 bits

Prenons l’exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre −32768 et 32767

entier relatif x positif ou nul : pas de changement.

entier relatif x strictement négatif : représenté par l’entier
naturel x + 216 = x + 65536, qui est compris entre 32768 et
65535.

Ainsi les entiers naturels de 0 à 32767 servent à représenter
les entiers relatifs positifs ou nul

et les entiers naturels de 32768 à 65535 servent à représenter
les entiers relatifs strictement négatifs

22/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur
16 bits

Prenons l’exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre −32768 et 32767

entier relatif x positif ou nul : pas de changement.

entier relatif x strictement négatif : représenté par l’entier
naturel x + 216 = x + 65536, qui est compris entre 32768 et
65535.

Ainsi les entiers naturels de 0 à 32767 servent à représenter
les entiers relatifs positifs ou nul

et les entiers naturels de 32768 à 65535 servent à représenter
les entiers relatifs strictement négatifs

22/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur
16 bits

Prenons l’exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre −32768 et 32767

entier relatif x positif ou nul : pas de changement.

entier relatif x strictement négatif : représenté par l’entier
naturel x + 216 = x + 65536, qui est compris entre 32768 et
65535.

Ainsi les entiers naturels de 0 à 32767 servent à représenter
les entiers relatifs positifs ou nul

et les entiers naturels de 32768 à 65535 servent à représenter
les entiers relatifs strictement négatifs

22/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur
16 bits

Prenons l’exemple des mots de 16 bits : on peut représenter
les entiers relatifs compris entre −32768 et 32767

entier relatif x positif ou nul : pas de changement.

entier relatif x strictement négatif : représenté par l’entier
naturel x + 216 = x + 65536, qui est compris entre 32768 et
65535.

Ainsi les entiers naturels de 0 à 32767 servent à représenter
les entiers relatifs positifs ou nul

et les entiers naturels de 32768 à 65535 servent à représenter
les entiers relatifs strictement négatifs

22/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2

Figure – Représentation des entiers signés en complément à deux sur
16 bits

23/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur N
bits (CA2N)
Méthode 1

On veut représenter un nombre −2N−1 ≤ X < 2N−1 en CA2N

1 Si X est négatif, on calcule la représentation binaire de
2N + X . Le premier bit sera automatiquement 1.

2 Si X est positif, le premier bit sera à 0 et les N − 1 autres bits
seront la représentation de X en base 2 sur (N − 1) bits.

Exemple -67 en complément à 2 sur 8 bits. :

1 28 − 67 = 189
2 189→ 10111101

8
.

24/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur N
bits (CA2N)
Méthode 1

On veut représenter un nombre −2N−1 ≤ X < 2N−1 en CA2N

1 Si X est négatif, on calcule la représentation binaire de
2N + X . Le premier bit sera automatiquement 1.

2 Si X est positif, le premier bit sera à 0 et les N − 1 autres bits
seront la représentation de X en base 2 sur (N − 1) bits.

Exemple -67 en complément à 2 sur 8 bits. :

1 28 − 67 = 189
2 189→ 10111101

8
.

24/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur N
bits (CA2N)
Méthode 1

On veut représenter un nombre −2N−1 ≤ X < 2N−1 en CA2N

1 Si X est négatif, on calcule la représentation binaire de
2N + X . Le premier bit sera automatiquement 1.

2 Si X est positif, le premier bit sera à 0 et les N − 1 autres bits
seront la représentation de X en base 2 sur (N − 1) bits.

Exemple -67 en complément à 2 sur 8 bits. :

1 28 − 67 = 189
2 189→ 10111101

8
.

24/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur N
bits (CA2N)
Méthode 1

On veut représenter un nombre −2N−1 ≤ X < 2N−1 en CA2N

1 Si X est négatif, on calcule la représentation binaire de
2N + X . Le premier bit sera automatiquement 1.

2 Si X est positif, le premier bit sera à 0 et les N − 1 autres bits
seront la représentation de X en base 2 sur (N − 1) bits.

Exemple -67 en complément à 2 sur 8 bits. :

1 28 − 67 = 189
2 189→ 10111101

8
.

24/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur N
bits (CA2N)
Méthode 1

On veut représenter un nombre −2N−1 ≤ X < 2N−1 en CA2N

1 Si X est négatif, on calcule la représentation binaire de
2N + X . Le premier bit sera automatiquement 1.

2 Si X est positif, le premier bit sera à 0 et les N − 1 autres bits
seront la représentation de X en base 2 sur (N − 1) bits.

Exemple -67 en complément à 2 sur 8 bits. :
1 28 − 67 = 189

2 189→ 10111101
8
.

24/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur N
bits (CA2N)
Méthode 1

On veut représenter un nombre −2N−1 ≤ X < 2N−1 en CA2N

1 Si X est négatif, on calcule la représentation binaire de
2N + X . Le premier bit sera automatiquement 1.

2 Si X est positif, le premier bit sera à 0 et les N − 1 autres bits
seront la représentation de X en base 2 sur (N − 1) bits.

Exemple -67 en complément à 2 sur 8 bits. :
1 28 − 67 = 189
2 189→ 10111101

8
.

24/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

CA2n compatibilité avec l’addition

On reprend l’exemple de 3 + (−4).

En CA28, 3 s’écrit comme 00000011
8

En CA28, pour −4 :

−4 + 256 = 252 7→ 11111100
8

Addition en binaire :

1 00000011
2 +11111100
3 −−−−−−−−−
4 11111111

Que des 1 : il s’agit de −1 en CA28. Plus besoin de modifier
l’algorithme d’addition !

25/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

CA2n compatibilité avec l’addition

On reprend l’exemple de 3 + (−4).

En CA28, 3 s’écrit comme 00000011
8

En CA28, pour −4 :

−4 + 256 = 252 7→ 11111100
8

Addition en binaire :

1 00000011
2 +11111100
3 −−−−−−−−−
4 11111111

Que des 1 : il s’agit de −1 en CA28. Plus besoin de modifier
l’algorithme d’addition !

25/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

CA2n compatibilité avec l’addition

On reprend l’exemple de 3 + (−4).

En CA28, 3 s’écrit comme 00000011
8

En CA28, pour −4 :

−4 + 256 = 252 7→ 11111100
8

Addition en binaire :

1 00000011
2 +11111100
3 −−−−−−−−−
4 11111111

Que des 1 : il s’agit de −1 en CA28. Plus besoin de modifier
l’algorithme d’addition !

25/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

CA2n compatibilité avec l’addition

On reprend l’exemple de 3 + (−4).

En CA28, 3 s’écrit comme 00000011
8

En CA28, pour −4 :

−4 + 256 = 252 7→ 11111100
8

Addition en binaire :

1 00000011
2 +11111100
3 −−−−−−−−−
4 11111111

Que des 1 : il s’agit de −1 en CA28. Plus besoin de modifier
l’algorithme d’addition !

25/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

CA2n compatibilité avec l’addition

On reprend l’exemple de 3 + (−4).

En CA28, 3 s’écrit comme 00000011
8

En CA28, pour −4 :

−4 + 256 = 252 7→ 11111100
8

Addition en binaire :

1 00000011
2 +11111100
3 −−−−−−−−−
4 11111111

Que des 1 : il s’agit de −1 en CA28. Plus besoin de modifier
l’algorithme d’addition !

25/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

CA2n compatibilité avec l’addition

On reprend l’exemple de 3 + (−4).

En CA28, 3 s’écrit comme 00000011
8

En CA28, pour −4 :

−4 + 256 = 252 7→ 11111100
8

Addition en binaire :

1 00000011
2 +11111100
3 −−−−−−−−−
4 11111111

Que des 1 : il s’agit de −1 en CA28. Plus besoin de modifier
l’algorithme d’addition !

25/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.

1 Si le nombre est positif, donner son expression en binaire sur n
bits.

2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.

2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.

3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits
du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.

Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2 sur n
bits
Méthode 2

Complément à 2 (sur n bits). Ici n = 8.
1 Si le nombre est positif, donner son expression en binaire sur n

bits.
2 Si c’est −2N−1 son complément à 2 est 1 suivi de N − 1 zéros.
3 Si le nombre est négatif mais > −2N−1. Inverser tous les bits

du binaire de sa valeur absolue (ie. transformer 1 en 0 et lycée
de Versailles).

4 Ajouter 1 au bit de poids faible (attention aux retenues) !

Exo : prouver que c’est équivalent à la méthode 1.
Exemple -67 en complément à 2 sur 8 bits. :

1 67 : 010000112

2 inversion : 101111002

3 ajout de 1 au bit de poids faible : 101111012. Finalement

1011 1101
8
.

26/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Calcul de tête

Si l’on doit transformer un nombre négatif non nul en son
complément à deux ”de tête”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu’au premier 1 (compris) puis
d’inverser tous les suivants.

Prenons par exemple le nombre -20

Codage binaire de sa valeur absolue 20 : 00010100

On garde la partie à droite telle quelle : 00010100

On inverse la partie de gauche après le premier un : 11101100

Et voici -20 : 11101100
8
.

27/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Calcul de tête

Si l’on doit transformer un nombre négatif non nul en son
complément à deux ”de tête”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu’au premier 1 (compris) puis
d’inverser tous les suivants.

Prenons par exemple le nombre -20

Codage binaire de sa valeur absolue 20 : 00010100

On garde la partie à droite telle quelle : 00010100

On inverse la partie de gauche après le premier un : 11101100

Et voici -20 : 11101100
8
.

27/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Calcul de tête

Si l’on doit transformer un nombre négatif non nul en son
complément à deux ”de tête”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu’au premier 1 (compris) puis
d’inverser tous les suivants.

Prenons par exemple le nombre -20

Codage binaire de sa valeur absolue 20 : 00010100

On garde la partie à droite telle quelle : 00010100

On inverse la partie de gauche après le premier un : 11101100

Et voici -20 : 11101100
8
.

27/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Calcul de tête

Si l’on doit transformer un nombre négatif non nul en son
complément à deux ”de tête”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu’au premier 1 (compris) puis
d’inverser tous les suivants.

Prenons par exemple le nombre -20

Codage binaire de sa valeur absolue 20 : 00010100

On garde la partie à droite telle quelle : 00010100

On inverse la partie de gauche après le premier un : 11101100

Et voici -20 : 11101100
8
.

27/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Calcul de tête

Si l’on doit transformer un nombre négatif non nul en son
complément à deux ”de tête”, un bon moyen est de garder tous les
chiffres depuis la droite jusqu’au premier 1 (compris) puis
d’inverser tous les suivants.

Prenons par exemple le nombre -20

Codage binaire de sa valeur absolue 20 : 00010100

On garde la partie à droite telle quelle : 00010100

On inverse la partie de gauche après le premier un : 11101100

Et voici -20 : 11101100
8
.

27/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Soustraction binaire grâce au complément à 2

On veut effectuer 15− 14

En binaire 15 7→ 11112 et 14 7→ 11102

15 et −14 peuvent s’écrire en CA25. 15 7→ 01111
5

et
−14 7→ 10010

5

On effectue ensuite une simple addition en CA25.

1 ∗∗∗
2 01111
3 10010
4 +−−−−−−−−
5 (1)00001

. On sait que le résultat de 15− 14 tient en CA25 puisque ce
sont deux nombres de signes opposés qui tiennent en CA25.

On trouve donc que 15− 14 vaut 00001
5
, ce qui correspond à

1 en CA25.

28/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Soustraction binaire grâce au complément à 2

On veut effectuer 15− 14

En binaire 15 7→ 11112 et 14 7→ 11102

15 et −14 peuvent s’écrire en CA25. 15 7→ 01111
5

et
−14 7→ 10010

5

On effectue ensuite une simple addition en CA25.

1 ∗∗∗
2 01111
3 10010
4 +−−−−−−−−
5 (1)00001

. On sait que le résultat de 15− 14 tient en CA25 puisque ce
sont deux nombres de signes opposés qui tiennent en CA25.

On trouve donc que 15− 14 vaut 00001
5
, ce qui correspond à

1 en CA25.

28/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Soustraction binaire grâce au complément à 2

On veut effectuer 15− 14

En binaire 15 7→ 11112 et 14 7→ 11102

15 et −14 peuvent s’écrire en CA25. 15 7→ 01111
5

et
−14 7→ 10010

5

On effectue ensuite une simple addition en CA25.

1 ∗∗∗
2 01111
3 10010
4 +−−−−−−−−
5 (1)00001

. On sait que le résultat de 15− 14 tient en CA25 puisque ce
sont deux nombres de signes opposés qui tiennent en CA25.

On trouve donc que 15− 14 vaut 00001
5
, ce qui correspond à

1 en CA25.

28/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Soustraction binaire grâce au complément à 2

On veut effectuer 15− 14

En binaire 15 7→ 11112 et 14 7→ 11102

15 et −14 peuvent s’écrire en CA25. 15 7→ 01111
5

et
−14 7→ 10010

5

On effectue ensuite une simple addition en CA25.

1 ∗∗∗
2 01111
3 10010
4 +−−−−−−−−
5 (1)00001

. On sait que le résultat de 15− 14 tient en CA25 puisque ce
sont deux nombres de signes opposés qui tiennent en CA25.

On trouve donc que 15− 14 vaut 00001
5
, ce qui correspond à

1 en CA25.

28/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Soustraction binaire grâce au complément à 2

On veut effectuer 15− 14
En binaire 15 7→ 11112 et 14 7→ 11102

15 et −14 peuvent s’écrire en CA25. 15 7→ 01111
5

et
−14 7→ 10010

5

On effectue ensuite une simple addition en CA25.

1 ∗∗∗
2 01111
3 10010
4 +−−−−−−−−
5 (1)00001

Le bit le plus à gauche (1) est un artefact (Altération du
résultat d’un examen due au procédé technique utilisé) qui
n’est pas pris en compte. On sait que le résultat de 15− 14
tient en CA25 puisque ce sont deux nombres de signes
opposés qui tiennent en CA25.

On trouve donc que 15− 14 vaut 00001
5
, ce qui correspond à

1 en CA25.

28/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Soustraction binaire grâce au complément à 2

On veut effectuer 15− 14

En binaire 15 7→ 11112 et 14 7→ 11102

15 et −14 peuvent s’écrire en CA25. 15 7→ 01111
5

et
−14 7→ 10010

5

On effectue ensuite une simple addition en CA25.

1 ∗∗∗
2 01111
3 10010
4 +−−−−−−−−
5 (1)00001

. On sait que le résultat de 15− 14 tient en CA25 puisque ce
sont deux nombres de signes opposés qui tiennent en CA25.

On trouve donc que 15− 14 vaut 00001
5
, ce qui correspond à

1 en CA25.
28/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Du complément à 2 à la notation décimale

Soit X de complément à 2 sur 8 bits 1010 1101
8
.

Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément à 2 sur 8 bits, donc
−28−1 = −128 ≤ X ≤ − 1.

On calcule le codage décimal de 1010 1101, puis on soustrait
256 (i.e. −28).

−(1× 28) + 1× 27 + 0× 26 + 1× 25 + 0× 24 + . . .
· · ·+ 1× 23 + 1× 22 + 0× 21 + 1× 20 = −83 = X

29/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Du complément à 2 à la notation décimale

Soit X de complément à 2 sur 8 bits 1010 1101
8
.

Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément à 2 sur 8 bits, donc
−28−1 = −128 ≤ X ≤ − 1.

On calcule le codage décimal de 1010 1101, puis on soustrait
256 (i.e. −28).

−(1× 28) + 1× 27 + 0× 26 + 1× 25 + 0× 24 + . . .
· · ·+ 1× 23 + 1× 22 + 0× 21 + 1× 20 = −83 = X

29/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Du complément à 2 à la notation décimale

Soit X de complément à 2 sur 8 bits 1010 1101
8
.

Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément à 2 sur 8 bits, donc
−28−1 = −128 ≤ X ≤ − 1.

On calcule le codage décimal de 1010 1101, puis on soustrait
256 (i.e. −28).

−(1× 28) + 1× 27 + 0× 26 + 1× 25 + 0× 24 + . . .
· · ·+ 1× 23 + 1× 22 + 0× 21 + 1× 20 = −83 = X

29/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Du complément à 2 à la notation décimale

Soit X de complément à 2 sur 8 bits 1010 1101
8
.

Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément à 2 sur 8 bits, donc
−28−1 = −128 ≤ X ≤ − 1.

On calcule le codage décimal de 1010 1101, puis on soustrait
256 (i.e. −28).

−(1× 28) + 1× 27 + 0× 26 + 1× 25 + 0× 24 + . . .
· · ·+ 1× 23 + 1× 22 + 0× 21 + 1× 20 = −83 = X

29/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Du complément à 2 à la notation décimale

Soit X de complément à 2 sur 8 bits 1010 1101
8
.

Nombre négatif non nul (1 en bit de poids fort).

On peut coder X en complément à 2 sur 8 bits, donc
−28−1 = −128 ≤ X ≤ − 1.

On calcule le codage décimal de 1010 1101, puis on soustrait
256 (i.e. −28).

−(1× 28) + 1× 27 + 0× 26 + 1× 25 + 0× 24 + . . .
· · ·+ 1× 23 + 1× 22 + 0× 21 + 1× 20 = −83 = X

29/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Parité et signe en complément à 2

Pour reconnâıtre un nombre positif en complément à 2 sur n
bits, il suffit que son bit de poids fort soit à 0,

Négatif : son bit de poids fort à 1.

-1 est toujours l’entier qui, en complément à deux sur n bits,
a une représentation ne comportant que des 1.

30/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Parité et signe en complément à 2

Pour reconnâıtre un nombre positif en complément à 2 sur n
bits, il suffit que son bit de poids fort soit à 0,

Négatif : son bit de poids fort à 1.

-1 est toujours l’entier qui, en complément à deux sur n bits,
a une représentation ne comportant que des 1.

30/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Parité et signe en complément à 2

Pour reconnâıtre un nombre positif en complément à 2 sur n
bits, il suffit que son bit de poids fort soit à 0,

Négatif : son bit de poids fort à 1.

-1 est toujours l’entier qui, en complément à deux sur n bits,
a une représentation ne comportant que des 1.

30/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Représentation des entiers signés en complément à 2

Figure – Quelques entiers signés en complément à 2

En complément à 2 sur N bits on représente tous les entiers de
−2N−1 à 2N−1 − 1. Sur 32 bits : de −231 = −2147483648 à
231 − 1 = 2147483647 (plus ou moins 2 milliards).

31/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Extension de format

Figure – Duplication du bit de poids fort

Exemple : soit 10001000
8

un entier signé représenté en
complément à 2 sur 8 bits. En complément à 2 sur 12 bits, on
obtient : 111110001000

12

32/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Overflow

Il y a overflow (dépassement de capacité) lorsque le nombre à
représenter ne tient pas dans le format choisi.

Pour reconnâıtre un overflow dans une addition en
complément à 2 :

1 si les deux opérandes sont du même signe : dépassement si le
résultat est de signe opposé,

2 Si les deux opérandes sont de signes opposés, il n’y a jamais
dépassement.

33/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Overflow

Il y a overflow (dépassement de capacité) lorsque le nombre à
représenter ne tient pas dans le format choisi.

Pour reconnâıtre un overflow dans une addition en
complément à 2 :

1 si les deux opérandes sont du même signe : dépassement si le
résultat est de signe opposé,

2 Si les deux opérandes sont de signes opposés, il n’y a jamais
dépassement.

33/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Overflow

Il y a overflow (dépassement de capacité) lorsque le nombre à
représenter ne tient pas dans le format choisi.

Pour reconnâıtre un overflow dans une addition en
complément à 2 :

1 si les deux opérandes sont du même signe : dépassement si le
résultat est de signe opposé,

2 Si les deux opérandes sont de signes opposés, il n’y a jamais
dépassement.

33/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Overflow

Il y a overflow (dépassement de capacité) lorsque le nombre à
représenter ne tient pas dans le format choisi.

Pour reconnâıtre un overflow dans une addition en
complément à 2 :

1 si les deux opérandes sont du même signe : dépassement si le
résultat est de signe opposé,

2 Si les deux opérandes sont de signes opposés, il n’y a jamais
dépassement.

33/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

On additionne 01111000
8

(120) et 01110011
8

(115) en CA28.

1 ∗∗∗∗
2 01110011
3 +01111000
4 −−−−−−−−−
5 11101011 (changement de s i g n e donc o v e r f l o w)

On constate un overflow.

On passe au CA29. 120 : 001111000
9

et 115 : 001110011
9

1 ∗∗∗∗
2 001110011
3 +001111000
4 −−−−−−−−−
5 011101011

Le résultat, 011101011
9

représente 235 en CA29.

34/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

On additionne 01111000
8

(120) et 01110011
8

(115) en CA28.

1 ∗∗∗∗
2 01110011
3 +01111000
4 −−−−−−−−−
5 11101011 (changement de s i g n e donc o v e r f l o w)

On constate un overflow.

On passe au CA29. 120 : 001111000
9

et 115 : 001110011
9

1 ∗∗∗∗
2 001110011
3 +001111000
4 −−−−−−−−−
5 011101011

Le résultat, 011101011
9

représente 235 en CA29.

34/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

On additionne 01111000
8

(120) et 01110011
8

(115) en CA28.

1 ∗∗∗∗
2 01110011
3 +01111000
4 −−−−−−−−−
5 11101011 (changement de s i g n e donc o v e r f l o w)

On constate un overflow.

On passe au CA29. 120 : 001111000
9

et 115 : 001110011
9

1 ∗∗∗∗
2 001110011
3 +001111000
4 −−−−−−−−−
5 011101011

Le résultat, 011101011
9

représente 235 en CA29.

34/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

On additionne 01111000
8

(120) et 01110011
8

(115) en CA28.

1 ∗∗∗∗
2 01110011
3 +01111000
4 −−−−−−−−−
5 11101011 (changement de s i g n e donc o v e r f l o w)

On constate un overflow.

On passe au CA29. 120 : 001111000
9

et 115 : 001110011
9

1 ∗∗∗∗
2 001110011
3 +001111000
4 −−−−−−−−−
5 011101011

Le résultat, 011101011
9

représente 235 en CA29.

34/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

On additionne 01111000
8

(120) et 01110011
8

(115) en CA28.

1 ∗∗∗∗
2 01110011
3 +01111000
4 −−−−−−−−−
5 11101011 (changement de s i g n e donc o v e r f l o w)

On constate un overflow.

On passe au CA29. 120 : 001111000
9

et 115 : 001110011
9

1 ∗∗∗∗
2 001110011
3 +001111000
4 −−−−−−−−−
5 011101011

Le résultat, 011101011
9

représente 235 en CA29.

34/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

On additionne 01111000
8

(120) et 01110011
8

(115) en CA28.

1 ∗∗∗∗
2 01110011
3 +01111000
4 −−−−−−−−−
5 11101011 (changement de s i g n e donc o v e r f l o w)

On constate un overflow.

On passe au CA29. 120 : 001111000
9

et 115 : 001110011
9

1 ∗∗∗∗
2 001110011
3 +001111000
4 −−−−−−−−−
5 011101011

Le résultat, 011101011
9

représente 235 en CA29.

34/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

1 Introduction

2 Les entiers non signés
Généralités
Changement de base
Opérations

3 Entiers signés

4 Les entiers en Python

35/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Cette section hors programme est laissée au lecteur curieux.

36/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Découpage des entiers en Python

D’après Nicolas Pécheux.

Les entiers en Python ont une précision non limitée. Ils ne
fonctionnent donc pas en complément à 2.

Sur une machine 32 bits, la représentation binaire d’un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

Les cases du tableau sont donc les coefficients de x dans sa
représentation en base 215.

A ce tableau est associée un (petit) entier indiquant le nombre
de chiffres de x dans la base 215.

37/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Découpage des entiers en Python

D’après Nicolas Pécheux.

Les entiers en Python ont une précision non limitée. Ils ne
fonctionnent donc pas en complément à 2.

Sur une machine 32 bits, la représentation binaire d’un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

Les cases du tableau sont donc les coefficients de x dans sa
représentation en base 215.

A ce tableau est associée un (petit) entier indiquant le nombre
de chiffres de x dans la base 215.

37/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Découpage des entiers en Python

D’après Nicolas Pécheux.

Les entiers en Python ont une précision non limitée. Ils ne
fonctionnent donc pas en complément à 2.

Sur une machine 32 bits, la représentation binaire d’un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

Les cases du tableau sont donc les coefficients de x dans sa
représentation en base 215.

A ce tableau est associée un (petit) entier indiquant le nombre
de chiffres de x dans la base 215.

37/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Découpage des entiers en Python

D’après Nicolas Pécheux.

Les entiers en Python ont une précision non limitée. Ils ne
fonctionnent donc pas en complément à 2.

Sur une machine 32 bits, la représentation binaire d’un entier
Python x est découpée en paquets de 15 bits, stockés dans un
tableau dont les éléments sont des entiers de 16 bits (pour
que la taille soit un multiple de 8).

Les cases du tableau sont donc les coefficients de x dans sa
représentation en base 215.

A ce tableau est associée un (petit) entier indiquant le nombre
de chiffres de x dans la base 215.

37/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

Soit le nombre x = 1234567891011. Il s’écrit en binaire

000010001111101︸ ︷︷ ︸
114910

| 110001111110110︸ ︷︷ ︸
2559010

| 000100001000011︸ ︷︷ ︸
211510

Dans la base 215, il faut 32768 symboles pour les digits. On
peut garder l’écriture en base 10 comme symbole. Ainsi x
s’écrit

1149102559010211510
215

en base 215

Alors x est représenté en Python par le tableau [2115,
25590, 1149] (little-endian) et l’entier 3.
Et −x est représenté par le même tableau et −3.

38/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

Soit le nombre x = 1234567891011. Il s’écrit en binaire

000010001111101︸ ︷︷ ︸
114910

| 110001111110110︸ ︷︷ ︸
2559010

| 000100001000011︸ ︷︷ ︸
211510

Dans la base 215, il faut 32768 symboles pour les digits. On
peut garder l’écriture en base 10 comme symbole. Ainsi x
s’écrit

1149102559010211510
215

en base 215

Alors x est représenté en Python par le tableau [2115,
25590, 1149] (little-endian) et l’entier 3.
Et −x est représenté par le même tableau et −3.

38/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Exemple

Soit le nombre x = 1234567891011. Il s’écrit en binaire

000010001111101︸ ︷︷ ︸
114910

| 110001111110110︸ ︷︷ ︸
2559010

| 000100001000011︸ ︷︷ ︸
211510

Dans la base 215, il faut 32768 symboles pour les digits. On
peut garder l’écriture en base 10 comme symbole. Ainsi x
s’écrit

1149102559010211510
215

en base 215

Alors x est représenté en Python par le tableau [2115,
25590, 1149] (little-endian) et l’entier 3.
Et −x est représenté par le même tableau et −3.

38/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Opérations arithmétiques

La base choisie (215 pour une machine 32 bits, 230 pour une
64 bits) ne doit pas être trop grande pour que le processeur
puisse faire les opérations arithmétiques entre les digits.

En cas d’addition par exemple, les coefficients de mêmes
exposants sont additionnés par le processeur. Un petit logiciel
est ensuite chargé d’harmoniser les résultats (en cas de
propagation de retenue par exemple).

Ce traitement logiciel ralenti les opérations arithmétiques sur
les entiers Python.

39/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Opérations arithmétiques

La base choisie (215 pour une machine 32 bits, 230 pour une
64 bits) ne doit pas être trop grande pour que le processeur
puisse faire les opérations arithmétiques entre les digits.

En cas d’addition par exemple, les coefficients de mêmes
exposants sont additionnés par le processeur. Un petit logiciel
est ensuite chargé d’harmoniser les résultats (en cas de
propagation de retenue par exemple).

Ce traitement logiciel ralenti les opérations arithmétiques sur
les entiers Python.

39/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Opérations arithmétiques

La base choisie (215 pour une machine 32 bits, 230 pour une
64 bits) ne doit pas être trop grande pour que le processeur
puisse faire les opérations arithmétiques entre les digits.

En cas d’addition par exemple, les coefficients de mêmes
exposants sont additionnés par le processeur. Un petit logiciel
est ensuite chargé d’harmoniser les résultats (en cas de
propagation de retenue par exemple).

Ce traitement logiciel ralenti les opérations arithmétiques sur
les entiers Python.

39/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Pour connâıtre la base (en exposant de 2) et la taille
d’occupation (en octets) de chaque digit dans cette base, il
suffit d’entrer� �

1 import sys

2 sys.int_info� �

On obtient

sys.int_info(bits_per_digit =30,

sizeof_digit =4)

40/44 Ivan Noyer Représentation des nombres

Introduction
Les entiers non signés

Entiers signés
Les entiers en Python

Pour connâıtre la base (en exposant de 2) et la taille
d’occupation (en octets) de chaque digit dans cette base, il
suffit d’entrer� �

1 import sys

2 sys.int_info� �
On obtient

sys.int_info(bits_per_digit =30,

sizeof_digit =4)

40/44 Ivan Noyer Représentation des nombres

	Introduction
	Les entiers non signés
	Généralités
	Changement de base
	Opérations

	Entiers signés
	Les entiers en Python

