DS3 MP2I : piles et files; complexité

Aucun appareil électronique n’est autorisé.

Solution. O

1 Structure de file immuable

Avant de répondre aux questions de complexité, consulter la section EII.
Les fonctions du module sont interdites.

Question 1.

Ecrire la fonction ‘ rev : ’a list -> ’a list|qui inverse une liste.

Solution. Code

1|l let rev 1 =

2 let rec aux acc 1 =
3 match 1 with
4 | [-> acc
5 | x :: r -> aux (x :: acc) r
6 in
7 aux [] 1

Question 2.

Donner précisément le nombre d’ajouts en téte de liste (par |::]) effectués pour I'appel si la liste E est
de longueur n.

Solution. Exactement n ajouts avec | :: |. En effet, on a une relation de récurrence de la forme
C,=Ch_1+1sin>0et Cy=0

si C}, compte le nombre d’ajouts en téte de liste pour un appel a avec une liste de longueur n.

Nous implémentons une structure de file immuable. Dans un fichier d’interface files.mli® écrivons :

1 type 'a queue

2 val empty : 'a queue

3 val is_empty: 'a queue -> bool

4 val enqueue: 'a queue -> 'a -> 'a queue
5 val dequeue: 'a queue -> 'a * 'a queue

1. Les fichiers .ml/.mli jouent un réle analogue aux fichiers .¢/.h que I’on trouve en C.

Science Informatique 7 janvier 2026 Lycée Thiers

Nous voulons implanter ces primitives. Pour réaliser une file immuable on se sert de deux piles immuables (on
utilise des listes OCaml pour cela). Dans la premiére pile ([rear|), on ajoute les éléments qui entrent dans la file;
dans la seconde ()7 on retire les éléments qui sortent de la file. Lorsque la seconde pile est épuisée, on y
déplace tous les éléments de la premiere pile en les inversant.

On pose donc tout d’abord :

1 || type 'a queue = {

2 front: 'a list; (*liste od on retire les éléments*)
3 rear: 'a list; (*liste od on ajoute les éléments*)
4|}

Par exemple, la file qui contient les éléments 1,2 dans cet ordre (1 est le prochain élément défilé, 2 est le dernier
arrivé) peut étre représentée par

1||let £f12 = {front = []; rear = [2;1]1};;
2 || let £f12 = {front = [1]; rear = [2]};;
3 || let £f12 = {front = [1;2]; rear = [1};;

Question 3.

Avec notre structure de données de combien de facons différentes peut-on représenter une file qui contient
les éléments 1,2,...,n dans cet ordre?

Solution. De n + 1 fagons. O

Question 4.

Déclarer la variable globale | empty : ’a queue ‘ qui représente une file vide.

Question 5.

Ecrire la fonction is_empty : ’a queue -> bool ‘ On veillera a obtenir la complexité temporelle la plus petite
possible.

1||# let q = empty in is_empty q;;

2 (|- : bool = true

3||# let q = {front = [1;2;3] ; rear = [6;5;4]} in is_empty q;;
4|[- : bool = false

Question 6.

Ecrire la fonction ‘ enqueue : ’a queue —> ’a —-> ’a queue ‘ telle que ajoute 1’élément a

la file E Comme il n’y a pas d’effet de bord (structure immuable) on crée une nouvelle file.

On veillera a obtenir la complexité temporelle la plus petite possible.
Voici un exemple d’utilisation :
let q = {front = [1;2;3] ; rear = [6;5;4]} in

enqueue q 7;;
- : int queue = {front = [1; 2; 3]; rear = [7; 6; 5; 41}

MP21I Page 2/08 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

Question 7.

Ecrire la fonction ‘ dequeue : ’a queue -> ’a * ’a queue ‘ telle que renvoie un couple dont le
premier élément est celui qui a été retiré a @ et le second est une nouvelle file qui correspond a ce qu’il reste de

E apres ce retrait.

e N R

o o

AW N

© 0 N o

11
12
13
14
15
16

Dauns le cas ot la file est vide une exception (de votre choix) est soulevée. Sinon, le principe est le suivant : si
la liste n’est pas vide on retire simplement son premier élément, mais si elle est vide, I'inverse de la liste

rear | prend la place de | front | et c’est a cet inverse qu’on retire un élément.

Voici un exemple d’exécution :

#

let q = {front = [1;2;3] ; rear = [6;5;4]} in

dequeue q;;

int * int queue = (1, {front = [2; 3]; rear = [6; 5; 4]1})
let q = {front = [] ; rear = [6;5;4;3;2;1]} in

dequeue q;;

int * int queue = (1, {front = [2; 3; 4; 5; 6]; rear = []})

SOhﬁiOﬂJ‘let empty = {front = [] ; rear = [];};;

let is_empty q = q.front = [] && q.rear = [I;;

let is_empty q = q = empty;; (¥xV2*)

let enqueue q x =

{front = q.front ; rear = x::q.rearl;;

let dequeue q =

match q.front with
| x::t -> x , {front = t; rear = g.rear}
| [-> let inv = List.rev g.rear in
match inv with
| [-> invalid_arg

| x::t -> x, {front =t ; rear = [1};;

O

Question 8.

On considere dans cette question que les files possedent n éléments.

1. Quelle est précisément le plus petit nombre d’ajouts en téte de liste | : : | pour I'appel si @ contient

2.

n éléments ?

Identifier le pire cas pour I'appel . Et donner précisément le plus grand nombre d’ajouts en téte
de liste [::] si @ contient n éléments.

On suppose que toutes les représentations d’une file donnée par un objet du type sont équiprobables
(on rappelle que plusieurs représentations sont possibles pour une méme file).

On note X la variable aléatoire qui donne la longueur du membre si @ est un objet de type

représentant une file de longueur n. On note c la fonction telle que c¢(k) donne le nombre d’opérations |::|
pour un appel ‘ enqueue q‘ si ‘ q.rear ‘ est de longueur k.

Calculer proprement (c’est & dire comme 'espérance E(c(X)) la complexité en moyenne de appel | dequeue q
pour une file ¢ de n éléments tous distincts.

Solution. 1. La complexité temporelle au mieux de l'appel |dequeue(q) | est O(1) (cas ou est non

vide). 0 ajout

2. La complexité au pire est O(n) (cas ou est vide) car il faut d’abord inverser la liste (les opérations

de filtrage et de réécriture qui s’ensuivent sont en O(1)).
n ajouts

MP2I

Page 3/08 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

3. Pour la complexité moyenne, qui est un calcul d’espérance, il faut identifier une variable aléatoire. Celle de
I’énoncé est convenable : X donne la longueur de la liste . Pour une file donnée a1, ..., a, de longueur

n et dont les éléments sont tous distincts, il y a n + 1 fagon de représenter cette file (voir question 3).
sit e [0,n] et P(X =7) =0
el e P =9

sinon. De plus, ¢(i) = 0 si i < n (pas d’ajout en téte de liste par [::]) et ¢(i) = n sinon (exactement n ajouts
pour le renversement).

Par th. du transfert

On a alors par équiprobabilité (puisque le sujet l'indique) : P(X = i) =

E(c(X)) = Y c@)P(X = z) = nilcmHj@p(X:x) S
=0 x=0

Donc complexité O(1) en moyenne.
O

Il ressort de calculs précédents que tout est réuni pour se lancer dans un calcul de complexité amortie. On étudie
donc, en partant de la file vide, le colit d’une séquence d’opérations (enfilement ou défilement) ot chaque opération
s’applique a la file obtenue avec I'opération précédente.

Pour une file @, on définit son potentiel ainsi :

d(q) 1 a longueur de la liste q.rear

Le cotit amorti a d’une opération est donc la complexité réelle ¢ de cette opération plus la différence des potentiels
apres et avant ’opération.

Soit une file E dont la longueur est £. On compte le nombre d’opérations [::|.

Question 9.

On consideére une opération d’enfilement sur @ Montrer que le colit amorti (nombre d’opérations de construction
[::]) est constant.

Solution. La complexité réelle est 1 (une seule construction). Et grossit de 1 élément. On a donc

a = 1+ As

1+(+1)—4

= 2

Question 10.

On considére une opération de défilement sur @ Montrer que le cotit amorti est constant.

Solution. 1l faut distinguer :

MP21I Page 4/08 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

Si n’est pas vide. Dans ce cas, on retire le premier élément de : ¢ = 0 puisqu’il n’y a pas

de d’opération [::]. Et on ne touche pas a la longueur de qui reste a /.

a = 0+Aq>

= 0402

Si | q.front | est vide Dans le cas ou |q.rear | est vide aussi, une exception est soulevée et aucune liste n’est

modifiée. On se retrouve dans le cas précédent.

Sinon, on inverse . Donc ¢ = ¢ (nombre d’opérations du renversement). La longueur de

passe de £ a 0.

a = {+0+ A
= (O)+0—¢
= 0.

Question 11.

En déduire la complexité amortie d’une opération dans une séquence d’opérations (enfilement/défilement) com-
mencant sur une file ayant un potentiel nul.
Solution. D’apres le corollaire du th. d’amortissement, puisque le coflit amorti est majoré par une constante (il
vaut 0 ou 2), on considére qu’une séquence de n opérations d’enfilement/défilement a un colit amorti pour chaque

opération en O(1). O

MP2I Page 5/03 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

2 Structure de pile mutable

On se donne les structures suivantes :

typedef struct node {
struct node *prev ;
struct node *next ;

DATA data;

5 } node_t;

typedef struct dlist {
node_ t xhead ;
node__t xtail ;
size_t size ;

} dlist_t;

Elles implémentent la notion de liste doublement chainée. La constante de préprocessing | DATA | est définie a la
compilation avec l'option |gcc ... -DDATA=float | Une valeur par défaut pour cette constante peut par exemple

étre fixée ainsi :

#ifndef DATA
#define DATA int

; #endif

Question 12.

Ecrire la fonction

dlist__t=* dlist__empty(void)

Elle renvoie un pointeur sur une liste doublement chainée vide. Le champ vaut zéro, les pointeurs internes

et sont nuls.
EF j’avais écris les pointeurs internes et sont nuls : cela a perturbé certains

Solution. Code

dlist_ t* dlist__empty(void)

{
dlist_t %1 = malloc(1 * sizeof 1) ;
if (1 NULL) return NULL;
//on peut utiliser calloc (1 , sizeof xl)
l—>head = NULL;
1—>tail = NULL;
l—>size =0}
return 1;
}
ou

dlist_t* dlist__empty(void){
return calloc(1,sizeof(dliste_t)) ;

}

Question 13.

Ecrire la fonction

dlist__push_front(dlist_t %1, DATA x)

qui ajoute la donnée en téte de liste. Le bouléen renvoyé indique que tout s’est bien passé () ou qu’un
probleme d’allocation a été rencontré lors de la création du nouveau maillon ()

Solution. Code

MP2I Page 6/03 DS3

Science Informatique 7 janvier 2026

Lycée Thiers

1 static node_t *node_new(DATA x)

node_t xp = (node_t *)calloc(1,sizeof(node_t)) ;
4 if (p NULL) return NULL;
p—>data = x;// prev et next sont NULL

6 return p;

7}

9 /* == ——P\cuisEe==———2
10 dlist__push_ front(dlist_t %1, DATA x)
1 {

> assert(l != NULL);
3 node_t *p = node_new(x) ;
+if (p NULL) return 3

6 p—>next = l->head;

1

1

1

1

1

1

1

1

19 if (1—>head != NULL) {
20 1—>head— >prev = p;
21} else {

22 /* liste vide : head et tail deviennent p */
2 l—>tail = p;

25 1l—>head = p;
26 1—>size++;

27 return 8
,

Question 14.

Ecrire la fonction
1 dlist__push__back(dlist_t =1, DATA x)

qui ajoute la donnée en queue de liste. Le bouléen renvoyé indique que tout s’est bien passé () ou qu'un

probleme d’allocation a été rencontré lors de la création du nouveau maillon ()

Solution. Code
1 dlist__push_ back(dlist_t =1, DATA x)

3 node_t xp = node_new(x) ;
4 if (p NULL) return 3

6 p—>prev = 1—>tail ;

0 if (1—>tail '= NULL) {
10 I—>tail— >next = p;
1 } else {

2 /* liste vide x/
3 l—>head = p;
1

1—>tail = p;
6 1—>size++;

7 return 3

Question 15.

Ecrire la fonction

dlist_ pop_ front(dlist_t *1, DATA xout)

MP2I Page 7/08

DS3

Science Informatique 7 janvier 2026

Lycée Thiers

qui retire le maillon de téte de la liste (la liste est modifiée). La valeur est renvoyée si ce retrait est

impossible, sinon on renvoie . Si le pointeur n’est pas vide, on le fait pointer sur la valeur du maillon
retiré.

Solution. Code

dlist_pop_ front(dlist_t *1, DATA xout)

assert (1 '=NULL) ;
if (1—>head NULL) return :

node_t *p = 1—>head ;
if (out != NULL) xout = p—>data;//l—>head—>data

l1—>head = l—>head— >next ;// p—>next ;
if (1—>head !'= NULL) {
1—>head— >prev = NULL
} else {
/% la liste devient vide x/
1—>tail = NULL;
}

free (p) ;
1—>size——;
return ;

Question 16.

Ecrire la fonction

Code

dlist_ pop_ back(dlist_t *1, DATA xout)

qui retire le maillon de queue de la liste (la liste est modifiée). La valeur est renvoyée si ce retrait est
impossible (liste vide), sinon on renvoie . Si le pointeur n’est pas vide, on le fait pointer sur la valeur
du maillon retiré.

Solution. Code

dlist__pop_ back(dlist_t *1, DATA sxout)

assert (1 !=NULL) ;
if (1—>tail NULL) return 3

node_t *p = 1— >tail ;
if (out != NULL) xout = p—>data;

1—>tail = p—>prev;

if (1—>tail != NULL) {
1—>tail— >next = NULL ;

} else {
/% la liste devient vide x/
1—>head = NULL

}

free (p) ;
1—>size——;
return 3

MP2I Page 8/03

DS3

10

12

> {

Science Informatique

7 janvier 2026

Lycée Thiers

Question 17.

Ecrire la fonction

size_t dlist_ length(const dlist_t *I)

qui donne le nombre de maillons en O(1).

Solution. Code

size_t dlist_length(const dlist_t *1)

/# on a un champ size, donc O(1) */
return 1— >size ;

Question 18.

Ecrire la fonction

void dlist_ clear(dlist_t 1)

qui nettoie le pointeur : elle libere tous les maillons de la liste, et met a jour les 3 champs de de sorte que la
liste pointée devienne vide. Le pointeur n’est pas libéré.

Solution. Code

void dlist_ clear(dlist_t x*1)

node_t *p = 1—>head ;

while (p != NULL) {
node_t *nxt = p— >next;
free (p) ;
P = nxt;

}

l—>head = NULL

1—>tail = NULL;

l—>size =0}

}

ou

void dlist_ clear(dlist_t x*I)

while (dlist_ pop_ front(l, NULL)) { }

plus court! O
Question 19.
Ecrire une fonction
void dlist_rev(dlist_t 1) ;
qui inverse la liste pointée par . La liste 1,2, 3 devient 3,2, 1.
FF on ne construit pas une nouvelle liste, la liste en entrée doit étre modifiée.
Solution. Code
MP2I Page 9/03 DS3

N

Science Informatique

7 janvier 2026

Lycée Thiers

> void dlist_rev(dlist_t *1){

//une liste vide ou singleton est son propre inverse
if (dlist_length(l)<=1) return;
node_t xp = 1— >tail ;
node_ t *tmp ;
while (p != NULL){
tmp = p—>prev;
p— >prev = p— >next ;
pP— >next = tmp;
p = tmp;
}
tmp = l—>head ;
1—>head = 1—>tail ;
1—>tail = tmp;

On évite les codes comme

for (size_ t i =0, n=1->size; i < n;it++) {
dlist__push_ back(l, 1— >head— >data) ;
dlist__pop_ front(l, NULL) ;

C’est une mauvaise idée ici (alloc/free inutiles, copie de DATA), alors que linversion des pointeurs est propre et
efficace. O
MP2I Page 10/08 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

3 Quick Select de Hoare

De nombreuses applications requiérent le calcul de I’élément de rang k (dans 1’ordre croissant et en commencant
a zéro) d’une liste d’objets. Pour tous les calculs de complexité a venir, on suppose que la longueur de
la liste a étudier est n.

Question 20.

Expliquer en quelques mots comment obtenir 1’élément de rang r par application d’un tri. Puis donner la
complexité temporelle au pire qu’on peut raisonnablement espérer avec cette méthode SI LES COMPARAISONS
SONT EN O(1).

Solution. On fait un tri (fusion) en O(nlogn) puis une recherche de ’élément de rang k en O(min(k,n)). Comme
k < n (pas de programmation défensive) on a un O(nlogn).

Les comparaisons sont comptées en O(1) dans cette analyse. Pourquoi O(1) ? Le sujet n’est pas assez explicité
a ce propos, j’ai été large dans la correction. O

Le Quick Select de Hoare ne fait pas de tri préalable et s’inspire du tri rapide. Il s’appuie lui aussi sur une
fonction de partitionnement.

Question 21.

Ecrire la fonction en récursion terminale

1 partition

2 (leq : 'a -> 'a -> bool)
3 (1 : 'a list)

4 (x : 'a)

5 'a list * 'a list * int

La fonction renvoie la liste des éléments de plus petit que le pivot (au sens de la fonction de comparaison
) B]a liste des éléments plus grands et le nombre d’éléments plus petits ou égaux au pivot. Aucune fonction
auxiliaire de calcul de longueur de liste n’est autorisé : le triplet renvoyé doit s’obtenir en un seul parcours.

1||# let 1 = [5; 1;8;9;2;1;0;10] in partition (<=) 1 6;;

- : int list * int list * int = ([5; 1; 2; 1; 0], [8; 9; 101, 5)

2

Solution. Code

1 || let partition leq (1 : 'a list) (x : 'a)

2) 'a list * 'a list * int =

3 let rec aux 1 acc_le acc_gt n_le =

4 match 1 with

5 | [-> (List.rev acc_le, List.rev acc_gt, n_le)
6 |y :: q ->

7 if leq y x

8 then aux q (y :: acc_le) acc_gt (n_le + 1)

9 else aux q acc_le (y :: acc_gt) n_le

in
aux 1 []1 [1 0;;

[
o

o
-

2. leq signifie « less or equal ».

MP21I Page 11/08 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

Question 22.

Quelle est le nombre d’appels a dans le calcul |partition leq 1 x|? On ne demande pas une analyse
détaillée, seule la réponse importe.

Solution. n fois O

On cherche le k-iéme plus petit élément (en comptant les positions & partir de zéro) d’une liste £ de longueur n.
L’algorithme procede récursivement ainsi :

— On isole le premier élément p de la liste (le pivot) et on partitionne le reste de la liste (donc sans p) au moyen
de ce pivot. On récupere un triplet g, d, m avec g, d deux listes telles que |g| + |d| =n — 1 et m = |g|.

— Si k < m alors on cherche I’élément en position k£ dans g;
— Si k = m, le pivot est ’élément en position k ;

— Si k > m, ’élément en position k de ¢ dans d. Mais la liste parcourue n’est plus de taille n : il faut changer k
(voir question suivante).

Question 23.

Avec les conventions précédentes, lorsque k > m, I’élément de £ en position k est aussi I’élément de d en position
k'. Exprimer k' & l’aide de k.

Solution. Pour comprendre, prenons k = 5 et la liste £ = 1,2,3,6,7,8,9,10. Alors g = 2,3 et d = 6,7,8,9,10. La
longueur m = 2.

On cherche I’élément en position 5 de £ : c’est 8.

Et 8 est en position k' = 2 dans d, c’est a dire k — (m + 1).

Ainsi ¥ =k — (m+1) O

Question 24.

Ecrire la fonction

1“ quickselect (leq :'a -> 'a -> bool) (1 : 'a list) (k : int) : 'a

qui réalise le Quick Select et renvoie la valeur de I’élément en position k de ¢ (lorsque ¢ est trié par 'ordre induit
par) Si k < 0ouk >n—1, une exception est soulevée mais aucune fonction de calcul de longueur ne doit
étre appliquée.

1(|# let 1 = [5; 1;8;9;2;1;0;10] in partition (<=) 1 15;;

2 || - : int list * int list * int = ([5; 1; 8; 9; 2; 1; 0; 101, [1, 8)
3 ||# let x = quickselect (<=) [7; 2; 9; 2; 5; 1] 20;;

4 || Exception: Invalid_argument

Solution. Code

let quickselect leq (1 : 'a list) (k : int) : 'a =
let rec loop 1 k =
match 1 with
| [1 -> invalid_arg
| p :: q ->
let (le, gt, m) = partition leq q p in
if k < m then
loop 1le k
else if k = m then
p
else
loop gt (k - (m + 1))

[B R S

== = e
w N B O ©

o
~

MP21I Page 12/08 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

15 in
16 if k < 0 then invalid_arg g
17 loop 1 kj;;

19 || let x = quickselect (<=) [7; 2; 9; 2; 5; 1] 3;;
20 || (¥ liste triée: [1;2;2;5;7;9], k=3 -> 5 *)

Question 25.

Etablir la terminaison de I'appel quickselect (<=) 1 k‘ pour |[4| = n.

Solution. La liste passée en parametre de I’appel interne est strictement pus courte que celle de I’appel externe. [

On peut établir que la complexité moyenne du Quick Select est un O(n) pour des listes dont tous les éléments

sont distincts.

MP2I Page 13/03 DS3

Science Informatique 7 janvier 2026 Lycée Thiers

4 Appendice

4.1 A propos du nombre de concaténations

Les questions relatives a la complexité en moyenne et amortie dans la premiere partie portent sur le nombre
d’applications de 'opérateur |::] effectuées pour 'ensemble de la récursion. On rappelle & ce propos que :

— la production de la liste vide se fait sans appel au constructeur [::|;

— la production d’une liste comme | [1;2] | se fait en 2 applications du constructeur (mémes si elles sont

cachées). En effet | [1;2] | est du sucre syntaxique pour exprimer |1::(2::[]) |

Attention : On ne compte que les constructions de listes, c’est-a-dire les applications du constructeur
((::]) apparaissant dans les expressions, et non celles intervenant dans les motifs de filtrage.

4.2 Espérance
On rappelle le théoréme du transfert :

Théoréme 4.1. Soit X une variable aléatoire finie prenant les valeurs {xy,...,x,} et f une fonction da valeurs
réelles dénie sur {x1,...,x,}. Alors la variable aléatoire f(X) a une espérance finie et

4.3 Enregistrements immuables en OCaml

En OCaml, un enregistrement est un type composé de plusieurs champs nommés. Par défaut, les champs sont
immuables : une fois la valeur créée, on ne peut pas modifier un champ.

Déclaration d’un type enregistrement On déclare un type représentant un point du plan a deux co-

ordonnées [x | et de type :

1 || type point = {
2 X : int;

3 y : int;

4

}

Chaque champ est défini par :

— son nom ([x],)7
— son type ([int]).
Création d’un enregistrement On crée une valeur de type en donnant une valeur a chaque champ :
1]|let p1 : point = { x = 3; y = 5 }
L’ordre des champs n’a pas d’importance :

1“1et p2 = {y=0; x =11}

Accés aux champs L’acces a un champ se fait avec I'opérateur 7 :

1 || let abs_x

let abs_y

pl.x
pl.y

2

On peut utiliser les champs dans des expressions :

1||let distance_origine p =

2 abs p.x + abs p.y

Immuabilité des champs Les champs étant immuables, 'instruction suivante est interdite :

1||pl.x <= 10 (* ERREUR %)

MP21I Page 14/08 DS3

Science Informatique 7 janvier 2026

Lycée Thiers

Pour « modifier » un point, on doit en créer un nouveau :

1Hlet p3 = { x = 10; y = pl.y}

ou (plus concis mais moins clair) :

1||1et p3 = { pi with x = 10 }

Ici, est un nouveau point ; reste inchangé.

MP2I Page 15/08

DS3

	Structure de file immuable
	Structure de pile mutable
	Quick Select de Hoare
	Appendice
	À propos du nombre de concaténations
	Espérance
	Enregistrements immuables en OCaml

